Inventiones mathematicae

, Volume 121, Issue 1, pp 439–479

Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli

Authors

  • Ching-Li Chai
    • Department of MathematicsUniversity of Pennsylvania
Article

DOI: 10.1007/BF01884309

Cite this article as:
Chai, C. Invent Math (1995) 121: 439. doi:10.1007/BF01884309

Abstract

We prove that any ordinary symplectic separable isogeny class in the moduli space of principally polarized abelian varieties over a field of positive characteristic is dense in the Zariski topology.

Copyright information

© Springer-Verlag 1995