[1]

C. Berge and A. Ghouila-Houri,*Programming, Games and Transportation Networks*, Wiley and Sons (N. Y., 1965).

[2]

J. H. Chou, W. S. Hsia and T. Y. Lee, On multiple objective programming problems with set functions,*J. Math. Anal. Appl.*,**105** (1985), 383–394.

[3]

J. H. Chou, W. S. Hsia and T. Y. Lee, Second order optimality conditions for mathematical programming with set functions,*J. Austral. Math. Soc. (Ser. B)*,**26** (1985), 284–292.

[4]

J. H. Chou, W. S. Hsia and T. Y. Lee, Epigraphs of convex set functions,*J. Math. Anal. Appl.*,**118** (1986), 247–254.

[5]

J. H. Chou, W. S. Hsia and T. Y. Lee, Convex programming with set functions,*Rocky Mountain J. Math.*,**17** (1987), 535–543.

[6]

H. W. Corley, Optimization theory for*n*-set functions,*J. Math. Anal. Appl.*,**127** (1987), 193–205.

[7]

B. D. Craven and J. J. Koliha, Generalizations of Farkas' theorems,*SIAM J. Math. Anal.*,**8** (1977), 983–997.

[8]

Ky Fan, On systems of linear inequalities,*Linear Inequalities and Related System (Ann. of Math. Studies 38)*, Edited by H. W. Kuhn and A. W. Tucker, Princeton Univ. Press (Princeton, N. J., 1956), pp. 99–156.

[9]

W. S. Hsia and T. Y. Lee, Proper*D*-solutions of multiobjective programming problems with set functions,*J. Optim. Theory Appl.*,**53** (1987), 247–258.

[10]

H. C. Lai and S. S. Yang, Saddle point and duality in the optimization theory of convex functions,*J. Austral. Math. Soc. (Ser. B)*,**24** (1982), 130–137.

[11]

H. C. Lai, S. S. Yang and Goerge R. Hwang, Duality in mathematical programming of set functions — On Fenchel duality theorem,*J. Math. Anal. Appl.*,**95** (1983), 223–234.

[12]

H. C. Lai and C. P. Ho, Duality theorem of nondifferentiable convex multiobjective programming,*J. Optim. Theory Appl.*,**50** (1986), 407–420.

[13]

H. C. Lai and L. J. Lin, Moreau-Rockafellar type theorem for convex set functions,*J. Math. Anal. Appl.*,**132** (1988); 558–571.

[14]

H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions,*Proc. Amer. Math. Soc.*,**103** (1988), 85–90.

[15]

H. C. Lai and L. J. Lin, Optimality for set functions with values in ordered vector spaces,*J. Optim. Theory Appl.*,**63** (1989), 371–389.

[16]

H. C. Lai and L. S. Yang, Strong duality for infinite-dimensional vector-valued programming problems,*J. Optim. Theory Appl.*,**62** (1989), 449–466.

[17]

O. L. Mangasarian,*Nonlinear Programming*, McGraw-Hill Co. (N. Y., 1969).

[18]

R. J. T. Morris, Optimal constrained selection of a measurable subset,*J. Math. Anal. Appl.*,**70** (1979), 546–562.

[19]

J. Zowe, A duality theorem for a convex programming problem in order complete vector lattices,*J. Math. Anal. Appl.*,**50** (1975), 273–287.