The Journal of Membrane Biology

, Volume 92, Issue 3, pp 195-205

First online:

Identification of the anion exchange protein of ehrlich cells: A kinetic analysis of the inhibitory effects of 4,4′-diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with3H-DIDS

  • Flemming JessenAffiliated withInstitute of Biological Chemistry A, August Krogh Institute, University of Copenhagen
  • , Carsten SjøholmAffiliated withNovo Industri A/S
  • , Else K. HoffmannAffiliated withInstitute of Biological Chemistry A, August Krogh Institute, University of Copenhagen

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In Ehrlich ascites tumor cells 4,4′-diisothiocyano-2,2′-stillbene-disulfonic acid (DIDS) inhibits the chloride exchange both reversibly and irreversibly. The reversible inhibition is practically instantaneous and of a competitive nature withK 1 about 2 μm at zero chloride concentration. This is succeeded by a slow irreversible binding of DIDS to the transporter, with a chloride dependence suggesting binding to the same site as for reversible DIDS binding/inhibition. To identify the membrane protein involved in anion exchange, cells were labeled with3H-DIDS. Incubation of cells for 10 min with 25 μm DIDS at pH 8.2 leads to more than 95% inhibition of the DIDS-sensitive chloride exchange flux when the chloride concentration is low (15mm). This condition was used for the3H-DIDS-labeling experiments. After incubation the cells were disrupted, the membranes isolated and solubilized, and the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The distribution of the3H-activity in the gel showed only one major peak, which could be related to protein with a mol wt of about 30,000 Daltons. The number of transport sites was estimated at about 400,000 per cell, and from the DIDS-sensitive chloride flux under steady-state conditions we calculate a turnover number of 340 ions per sec per site.

Key Words

anion exchange DIDS Ehrlich ascites tumor cells chloride fluxes