, Volume 46, Issue 4, pp 359-384

Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We report here a kinetic study of the mechanism by which the weak acid TTFB (4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole) transports protons across phospholipid bilayer membranes. A previous kinetic study of the homologous dichloro compound, DTFB, revealed that the rate limiting step for proton translocation was the back diffusion of the neutral, HA, form of the weak acid; we conclude here that this is also the rate limiting step for proton translocation with TTFB. At high concentrations of either DTFB or TTFB the charged permeant species is an HA 2 complex. The kinetic analysis and independent measurements reveal that the permeability of the membrane to HA and adsorption coefficients of A and HA are an order of magnitude higher for TTFB than for DTFB. When either DTFB or TTFB was present in a solution where the pH was less than the pK of the weak acid, an unusual relaxation in the current was noted on application of a voltage step. The amplitude of the relaxation decreased as the voltage was increased. This relaxation is possibly due to a reorientation of the benzimidazole molecules at the membrane-solution interface. We also report experiments performed with DTFB on mitochondria. It was possible to reconcile these results with the bilayer data and, therefore, with the chemiosmotic hypothesis by postulating that the dielectric constant of the mitochondrial membrane is greater than that of a bilayer formed with decane as a solvent. To demonstrate the effect of dielectric constant on permeability, we replaced decane by 1-chlorodecane. This increased the capacitance of the artificial bilayer by a factor of two and the permeability of the bilayer to the A form of DTFB by two orders of magnitude.