[1]

D. Angluin, L. Hellerstein, andM. Karpinski: Learning read-once formulas with queries,*J. of the Association for Computing Machinery*
**40** (1993) 185–210.

[2]

N. Bshouty, T. Hancock, L. Hellerstein, and

M. Karpinski: An algorithm to learn read-once threshold formulas, and transformations between learning models,

*Computational Complexity*
**4** (1994) 37–61.

CrossRef [3]

R. E. Bixby: Matroids and operations research. in:*Advanced Techniques in the Practice of Operations Research*, (H. J. Greenberg, F. H. Murphy, and S. H. Shaw, eds.), North-Holland Publishers (1980) 333–459.

[4]

R. E. Bixby, andW. H. Cunningham: Converting linear programs to network problems,*Mathematics of Operations Research*
**5** (1980) 321–357.

[5]

R. E. Bixby, andD. K. Wagner: An almost linear time algorithm for graph realization,*Mathematics of Operations Research*
**13** (1988) 99–123.

[6]

T. H. Brylawski, andD. Lucas: Uniquely representable combinatorial geometries,*Teorie Combinatorie* (Proc. 1973 Internat. Colloq.) 83–104, Accademia nazionale dei Lincei, Rome, (1976).

[7]

D. Hausmann, andB. Korte: The relative strength of oracles for independence systems, in:*Special Topics of Applied Mathematics*, (J. Frehse, D. Pallaschke, and U Trottenberg, eds.), North-Holland Publishers (1980) 195–211.

[8]

L. Hellerstein, andC. Coullard: Learning binary matroid ports,*Proceedings of the 5th Annual SIAM Symposium on Discrete Algorithms* (1994) 328–335.

[9]

P. M. Jensen and

B. Korte: Complexity of matroid property algorithms,

*SIAM Journal of Computation*,

**11** (1) (1982) 184–190.

CrossRef [10]

J. Kahn: On the uniqueness of matroid representations over GF(4).*Bull. London Math Soc.*
**20** (1988) 5–10.

[11]

M. Kearns, M. Li, L. Pitt, andL. Valiant: On the learnability of boolean formulae,*Proc. 19th ACM Symposium on Theory of Computing* (1987) 285–295.

[12]

M. Kearns, andL. Valiant: Cryptographic limitations on learning boolean formulae and finite automata,*Proc. 21st ACM Symposium on Theory of Computing* (1989) 433–444.

[13]

A. Lehman: A solution of the Shannon switching game,

*Journal of the Society of Industrial and Applied Mathematics*
**12**:4 (1964) 687–725.

CrossRef [14]

J. G. Oxley:*Matroid Theory*, Oxford University Press, New York, (1992).

[15]

J. G. Oxley, D. Vertigan, andG. Whittle: On inequivalent representations of matroids over finite fields, Technical Report, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, (1994).

[16]

L. Pitt, and

L. Valiant: Computational limitations on learning from examples,

*J. ACM*
**35** (1988) 965–984.

CrossRef [17]

V. Raghavan, andS. Schach: Learning switch configurations,*Proceedings of Third Annual Workshop on Computational Learning Theory* Morgan Kaufmann Publishers (1990) 38–51.

[18]

V. Raghavan, andD. Wilkins: Learning μ-branching programs with queries,*Proceedings of the Sixth Annual Workshop on Computational Learning Theory*, ACM Press (1993) 27–36.

[19]

P. D. Seymour: The forbidden minors of binary clutters,*J. London Math. Soc.* (2)**12** (1975) 356–360.

[20]

P. D. Seymour: A note on the production of matroid minors,

*J. of Combinatorial Theory (B)*
**22** (1977) 289–295.

CrossRef [21]

P. D. Seymour: The matroids with the max-flow min-cut property,

*J. of Combinatorial Theory (B)*
**23** (1977) 189–222.

CrossRef [22]

P. D. Seymour: Recognizing graphic matroids,*Combinatorica*
**1** (1981) 75–78.

[23]

K. Truemper:*Matroid Decomposition*, Academic Press, San Diego, (1992).

[24]

W. T. Tutte: An algorithm for determining whether a given binary matroid is graphic,*Proc. Amer. Math. Soc.*
**11** (1960) 905–917.

[25]

D. J. A. Welsh:*Matroid Theory*, Academic Press, London, (1976).