[A]

T. Asano, An efficient algorithms for finding the visibility polygons for a polygonal region with holes.

*Transaction of IECE of Japan*, Vol. E-68 (1985), pp. 557–559.

Google Scholar[B]

K. Q. Brown, Geometric transforms for fast geometric algorithms. Ph.D. thesis, Department of Computer Science, Carnegie-Mellon University, 1980.

[C]

B. Chazelle, Filtering search: a new approach to query-answering.*Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science*, Tucson, 1983, pp. 122–132.

[CGL]

B. Chazelle, L. J. Guibas and D. T. Lee, The power of geometric duality.*Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science*, Tucson, 1983, pp. 217–225; also,*BIT*, Vol. 25 (1985), pp. 76–90.

[EOS]

H. Edelsbrunner, J. O'Rourke and R. Seidel, Constructing arrangements of lines and hyperplanes with applications.*Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science*, Tucson, 1983, pp. 83–91.

[EOW]

H. Edelsbrunner, M. H. Overmars and D. Wood, Graphics in flatland: a case study. In*Advances in Computing Research* (F. P. Preparata, ed.), Vol. 1, JAI Press Inc., 1983, pp. 35–59.

[EA]

H. El Gindy and D. Avis, A linear algorithm for computing the visibility polygon from a point.

*Journal of Algorithms*, Vol. 2 (1981), pp. 186–197.

MATHCrossRefMathSciNetGoogle Scholar[ET]

H. A. El Gindy and G. T. Toussaint, Efficient algorithms for inserting and deleting edges from triangulations. Manuscript, School of Computer Science, McGill University, 1984.

[GT]

H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union.*Proceedings of the 15th Annual ACM Symposium on Theory of Computing*, Boston, 1983, pp. 246–251; also,*Journal of Computer and System Sciences*, Vol. 30 (1985), pp. 209–221.

[GJPT]

M. R. Garey, D. S. Johnson, F. P. Preparata and R. E. Tarjan, Triangulating a simple polygon.

*Information Processing Letters*, Vol. 7, No. 4 (1978), pp. 175–179.

MATHCrossRefMathSciNetGoogle Scholar[H]

D. Harel, A linear time algorithm for the lowest common ancestors problem.*Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science*, Syracuse, N.Y., 1980, pp. 308–319.

[L78]

D. T. Lee, Proximity and reachability in the plane. Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1978.

[L83]

D. T. Lee, Visibility of a simple polygon.

*Computer Vision, Graphics, and Image Processing*, Vol. 22 (1983), pp. 207–221.

MATHCrossRefGoogle Scholar[LP]

D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers,

*Networks*, Vol. 14 (1984), pp. 393–410.

MATHCrossRefMathSciNetGoogle Scholar[LPW]

T. Lozano-Perez and M. A. Wesley, An algorithm for planning collision-free paths among polyhedral obstacles.

*Comm. ACM*, Vol. 22 (1979), pp. 560–570.

CrossRefGoogle Scholar[SS]

M. Sharir and A. Schoorr, On shortest paths in polyhedral spaces.*Proceedings of the 16th Annual ACM Symposium on Theory of Computing*, Washington, D.C., 1984, pp. 144–153.

[W]

E. Welzl, Constructing the visibility graph for

*n* line segments in

*O*(

*n*
^{2}) time.

*Information Processing Letters*, Vol. 20 (1985), pp. 167–171.

MATHCrossRefMathSciNetGoogle Scholar