, Volume 5, Issue 1-4, pp 561-571

Searching for empty convex polygons

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A key problem in computational geometry is the identification of subsets of a point set having particular properties. We study this problem for the properties of convexity and emptiness. We show that finding empty triangles is related to the problem of determining pairs of vertices that see each other in a star-shaped polygon. A linear-time algorithm for this problem which is of independent interest yields an optimal algorithm for finding all empty triangles. This result is then extended to an algorithm for finding empty convex r-gons (r> 3) and for determining a largest empty convex subset. Finally, extensions to higher dimensions are mentioned.

The first author is pleased to acknowledge support by the National Science Foundation under Grant CCR-8700917. The research of the second author was supported by Amoco Foundation Faculty Development Grant CS 1-6-44862 and by the National Science Foundation under Grant CCR-8714565.
Communicated by C. K. Wong.