Journal of Inherited Metabolic Disease

, Volume 8, Issue 3, pp 132–142

An evaluation of protein requirements in methylmalonic acidaemia

Authors

  • D. Ney
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • C. Bay
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • J. M. Saudubray
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • D. G. Kelts
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • S. Kulovich
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • L. Sweetman
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
  • W. L. Nyhan
    • Clinical Research Center of the UCSD Medical Center, and the Department of PediatricsUniversity of California
Article

DOI: 10.1007/BF01819298

Cite this article as:
Ney, D., Bay, C., Saudubray, J.M. et al. J Inherit Metab Dis (1985) 8: 132. doi:10.1007/BF01819298

Abstract

A 3-month-old girl and a 13-month-old boy with vitamin B12-unresponsive methylmalonic acidaemia were studied to determine responses to varying levels of protein intake of growth, nitrogen balance and organic acid metabolism. A linear increase in the excretion of methylmalonic acid was observed in both patients above a critical level of protein intake. The inflection point was judged to reflect a ceiling above which amino acid intake exceeded requirements and catabolism was initiated. Below this point in each infant there was a plateau of minimal excretion of methylmalonic acid. Within this plateau level a reasonable rate of growth and metabolic stability were achieved at intakes between 0.70 and 0.75 and between 0.75 and 1.17 g protein kg−1, respectively, indicating that there is a range of protein tolerance and the importance of an individual approach to the provision of protein in patients with methylmalonic acidaemia. In the 3-month-old infant, nitrogen equilibrium was achieved at protein intakes above 0.6 g kg−1 and modest nitrogen retention was attained at a protein intake of 0.75 g kg−1, a level at which the excretion of methylmalonic acid was minimal and weight gain satisfactory. A protein intake of 1.25 g kg−1 was required to achieve a level of nitrogen retention often considered optimal for normal growth; however, this infant demonstrated an elevated excretion of methylmalonic acid and was close to clinical illness at this level of protein intake. The 13-month-old infant demonstrated a normal level of nitrogen retention, minimal excretion of methylmalonic acid, and a satisfactory rate of growth at protein intakes of 1.0–1.17 g kg−1. The values should prove useful guidelines for the management of infants requiring minimal intakes of protein. In studies carried out at 18–20 months of age, supplementation of the basic diet containing 0.75 g kg protein−1 with a mixture of amino acids not containing the precursors of methylmalonic acid was associated with increase of retention of nitrogen and increased concentrations of some essential amino acids in plasma, but effects on growth and the excretion of methylmalonic acid were not significant.

Copyright information

© SSIEM and MTP Press Limited 1985