, Volume 80, Issue 3, pp 323-346

Central limit theorems for nonlinear functionals of stationary Gaussian processes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Let X=(X t ,t∈ℝ) be a stationary Gaussian process on (Ω, ℱ,P), letH(X) be the Hilbert space of variables inL 2 (Ω,P) which are measurable with respect toX, and let (U s ,s∈ℝ) be the associated family of time-shift operators. We sayYH(X) (withE(Y)=0) satisfies the functional central limit theorem or FCLT [respectively, the central limit theorem of CLT if in [respectively, ], where $$Y_T (t) \equiv {{\int\limits_0^{Tt} {U_s \circ Yds} } \mathord{\left/ {\vphantom {{\int\limits_0^{Tt} {U_s \circ Yds} } {\left\{ {Var\left( {\int\limits_0^T {U_s \circ Yds} } \right)} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} \right. \kern-\nulldelimiterspace} {\left\{ {Var\left( {\int\limits_0^T {U_s \circ Yds} } \right)} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}$$ andW(•) is a standard Wiener process on [0,1]. This paper provides some general sufficient conditions onX andY ensuring thatY satisfies the CLT or FCLT. Examples ofY are given which satisfy the CLT but not the FCLT. This work extends CLT's of Maruyama (1976) and Breuer and Major (1983).