, Volume 30, Issue 1, pp 1-11

Groupwise density and related cardinals

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We prove several theorems about the cardinal\(\mathfrak{g}\) associated with groupwise density. With respect to a natural ordering of families of nond-ecreasing maps fromω toω, all families of size\(< \mathfrak{g}\) are below all unbounded families. With respect to a natural ordering of filters onω, all filters generated by\(< \mathfrak{g}\) sets are below all non-feeble filters. If\(\mathfrak{u}< \mathfrak{g}\) then\(\mathfrak{b}< \mathfrak{u}\) and\(\mathfrak{g} = \mathfrak{d} = \mathfrak{c}\). (The definitions of these cardinals are recalled in the introduction.) Finally, some consequences deduced from\(\mathfrak{u}< \mathfrak{g}\) by Laflamme are shown to be equivalent to\(\mathfrak{u}< \mathfrak{g}\).