Graphs and Combinatorics

, Volume 5, Issue 1, pp 315–325

Gray codes for reflection groups

Authors

  • J. H. Conway
    • Mathematics DepartmentPrinceton University
  • N. J. A. Sloane
    • Mathematical Sciences Research CenterAT&T Bell Laboratories
  • Allan R. Wilks
    • Mathematical Sciences Research CenterAT&T Bell Laboratories
Article

DOI: 10.1007/BF01788686

Cite this article as:
Conway, J.H., Sloane, N.J.A. & Wilks, A.R. Graphs and Combinatorics (1989) 5: 315. doi:10.1007/BF01788686

Abstract

LetG be a finite group generated by reflections. It is shown that the elements ofG can be arranged in a cycle (a “Gray code”) such that each element is obtained from the previous one by applying one of the generators. The case G =A1n yields a conventional binary Gray code. These generalized Gray codes provide an efficient way to run through the elements of any finite reflection group.

Download to read the full article text

Copyright information

© Springer-Verlag 1989