[1]

T. A. Burton,*The generalized Liénard equation*, SLAM J. Control Ser. A,**3** (1965), pp. 223–230.

[2]

T. A. Burton,*Stability and Periodic Solutions of Ordinary and Functional Differential Equations*, Academic Press, Orlando, Florida (1985).

[3]

T. A. Burton -L. Hatvani,*Stability theorems for nonautonomous functional differential equations by Liapunov functionals*, Tôhoku Math. J.,**41** (1989), pp. 65–104.

[4]

T. A. Burton -C. G. Townsend,*On the generalized Liénard equation with forcing function*, J. Diff. Eq.,**4** (1968), pp. 620–633.

[5]

T. A. Burton -Bo Zhang,*Uniform ultimate boundedness and periodicity in functional differential equations*, Tôhoku Math. J.,**42** (1990), pp. 93–100.

[6]

J. R. Graef,*On the generalized Liénard equation with negative damping*, J. Diff. Eq.,**12** (1972), pp. 34–62.

[7]

J. K. Hale -O. Lopes,*Fixed point theorems and dissipative processes*, J. Diff. Eq.,**13** (1973), pp. 391–402.

[8]

T. Hara -T. Yoneyama,*On the global center of generalized Liénard equation and its application to stability problems*, Funkeialaj Ekvacioj,**28** (1985), pp. 171–192.

[9]

N. N. Krasovskii,*Stability of Motion*, Stanford University Press, Stanford, California (1963).

[10]

S. Murakami,*Asymptotic behavior of solutions of some differential equations*, J. Math. Anal. Appl.,**109** (1985), pp. 534–545.

[11]

G. Sansone -R. Conti,*Non-linear Differential Equations*, MacMillan, New York (1964).

[12]

A. Somolinos,*Periodic solutions of the sunflower equation*, Quart. Appl. Math.,**35** (1978), pp. 465–478.

[13]

J. Sugie,*On the generalized Liénard equation without the Signum condition*, J. Math. Anal. Appl.,**128** (1987), pp. 80–91.

[14]

J. Sugie,*On the boundedness of solutions of the generalized Liénard equation without the Signum condition*, Nonlinear Analysis,**11** (1987), pp. 1391–1397.

[15]

G. Villari,*On the qualitative behaviour of solutions of Liénard equation*, J. Diff. Eq.,**67** (1987), pp. 269–277.

[16]

G. Villari -F. Zanolin,*On a dynamical system in the Liénard plane. Necessary and sufficient conditions for the intersection with the vertical isocline and application*, Funcialaj Ekvacioj,**33** (1990), pp. 19–38.

[17]

P. Waltman -T. F. Bridgland,*On convergence of solutions of the forced Liénard equation*, J. Math. Phys.,**44** (1965), pp. 284–287.

[18]

T. Yoshizawa,*Asymptotic behavior of solutions of differential equations*, in*Differential Equations qualitative Theory (Szeged, 1984)*, Colloq. Math. Soc. János Bolyai,**47**, North-Holland, Amsterdam (1984), pp. 1141–1172.

[19]

BoZhang,*On the retarded Liénard equation*, Proc. Amer. Math. Soc., in press.