Length of the period of a quadratic irrational
 E. V. Podsypanin
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Let ξ be a real quadratic irrational of discriminant D=f^{2}D_{i}>0, where D_{i} is the fundamental discriminant of the field and h are the character and the number of classes of the field , respectively, and \(L\left( {1,\chi } \right) = \sum\limits_{n = 1}^\infty {\frac{{\chi \left( n \right)}}{n}} \) proves the following estimate for the length l of the period of the expansion of ξ into a continued fraction: where ω=1 if f=1 and ω=2 if f>1. A. S. Pen and B. F. Skubenko (Mat. Zametki, 5, No. 4, 413–482 (1969)) have proved this estimate in the case f=1, D_{1}≡0 (mod4).
 Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York (1966).
 L. V. Danilov and G. V. Danilov, “An estimate from above for the period of quadratic irrational,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat.,19, No. 9, 19–24 (1975).
 E. A. Murzaev, “On an estimate of the upper bound of the length of the period of a continued fraction,” Volzhskii Mat. Sb., No. 5, 260–261 (1966).
 A. S. Pen and B. F. Skubenko, “An upper bound for the period of a quadratic irrationality,” Mat. Zametki,5, No. 4, 413–418 (1969).
 E. V. Podsypanin, “An estimate from above for the length of the period of a quadratic irrationality,” in: Tezisy Dok. i Soobshch. Vsesoyuz. Shk. po Teorii Chisel, Dushanbe (1977), p. 100.
 J. H. E. Cohn, “The length of the period of the simple continued fraction of \(\sqrt d \) ,” Pac. J. Math.,71, No. 1, 21–32 (1977).
 D. R. Hickerson, “Length of period of simple continued fraction expansion of ,” Pac. J. Math.,46, 429–432 (1973).
 K. E. Hirst, “The length of periodic continued fractions,” Monatsh. Math.,76, 428–435 (1972).
 R. C. Stanton, C. Sudler, Jr., and H. C. Williams, “An upper bound for the period of the simple continued fraction for ,” Pac. J. Math.,67, No. 2, 525–536 (1976).
 Title
 Length of the period of a quadratic irrational
 Journal

Journal of Soviet Mathematics
Volume 18, Issue 6 , pp 919923
 Cover Date
 19820401
 DOI
 10.1007/BF01763963
 Print ISSN
 00904104
 Online ISSN
 15738795
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Industry Sectors
 Authors