1.

B. M. Alsén,*Multiple step gradient iterative methods for computing eigenvalues of large symmetric matrices*, Tech. Rep. UMINF-15.71, University of Umeå, 1971.

2.

I. Andersson,*Experiments with the conjugate gradient algorithm for the determination of eigenvalues of symmetric matrices*, Tech. Rep. UMINF-4.71, University of Umeå, 1971.

3.

T. A. Arias, M. C. Payne, and J. D. Joannopoulous,*Ab initio molecular dynamics: analytically continued energy functionals and insights into iterative solutions*, Physical Review Letters, 71 (1992), pp. 1077–1080.

4.

W. W. Bradbury and R. Fletcher,*New iterative methods for solutions of the eigen-problem*, Numer. Math., 9 (1966), pp. 259–267.

5.

F. Chatelin,*Simultaneous Newton's iteration for the eigenproblem*, Computing, Suppl., 5 (1984), pp. 67–74.

6.

F. Chatelin,*Eigenvalues of Matrices*, John Wiley, New York, 1993.

7.

H. Chen, T. K. Sarkar, S. A. Dianat, and J. D. Brulé,*Adaptive spectral estimation by the conjugate gradient method*, IEEE Trans. Acoustics, Speech, and Signal Processing, ASSP-34 (1986), pp. 272–284.

8.

J. K. Cullum,*The simultaneous computation of a few of the algebraically largest and smallest eigenvalues of a large, sparse, symmetric matrix*, BIT, 18 (1978), pp. 265–275.

9.

J. K. Cullum and W. E. Donath,*A block generalization of the symmetric s-step Lanczos algorithm*, Tech. Rep. RC 4845, IBM Research, Yorktown Heights, NY, 1974.

10.

J. K. Cullum and W. E. Donath,*A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices*, in Proceedings of the 1974 Conference on Decision and Control, Phoeniz, Arizona, November 1974, pp. 505–509.

11.

J. K. Cullum and R. A. Willoughby,*Lanczos Algorithms for Large Symmetric Eigenvalue Computations*, vol. 1, Theory, Birkhauser, Stuttgart, 1985.

12.

J. W. Demmel,*Three methods for refining estimates of invariant subspaces*, Computing, 38 (1987), pp. 43–57.

13.

J. J. Dongarra, C. B. Moler, and J. H. Wilkinson,*Improving the accuracy of computed eigenvalues and eigenvectors*, SIAM J. Numer. Anal., 20 (1983), pp. 46–58.

14.

A. Edelman, T. A. Arias, and S. T. Smith,*Conjugate gradient on the Stiefel and Grassmann manifolds*, submitted to SIAM J. Matrix Anal. Appl.

15.

R. L. Fox and M. P. Kapoor,*A miminimization method for the solution of the eigenproblem arising in structural dynamics*, in Proceedings of the Second Conference on Matrix Methods in Structural Mechanics, L. Berke, R. M. Bader, W. J. Mykytow, J. S. Przemieniecki, and M. H. Shirk, eds., Wright-Patterson Air Force Base, Ohio, 1969, pp. 271–306.

16.

I. Fried,*Gradient methods for finite element eigenproblems*, AIAA J., 7 (1969), pp. 739–741.

17.

I. Fried,*Optimal gradient minimization scheme for finite element eigenproblems*, J. Sound Vib., 20 (1972), pp. 333–342.

18.

Z. Fu and E. M. Dowling,*Conjugate gradient eigenstructure tracking for adaptive spectral estimation*, IEEE Trans. Signal Processing, 43 (1995), pp. 1151–1160.

19.

D. R. Fuhrmann and B. Liu,*An iterative algorithm for locating the minimal eigenvector of a symmetric matrix*, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1984, pp. 45.8.1–4.

20.

M. Geradin,*The computational efficiency of a new minimization algorithm for eigenvalue analysis*, J. Sound Vibration, 19 (1971), pp. 319–331.

21.

M. J. Gillan,*Calculation of the vacancy formation energy in aluminium*, Journal of Physics, Condensed Matter, 1 (1989), pp. 689–711.

22.

G. Golub and D. O'Leary,*Some history of the conjugate gradient and Lanczos methods*, SIAM Review, 31 (1989), pp. 50–102.

23.

R. Haimi-Cohen and A. Cohen,*Gradient-type algorithms for partial singular value decomposition*, IEEE Trans. Pattern. Anal. Machine Intell., PAMI-9 (1987), pp. 137–142.

24.

W. Karush,*An iterative method for finding characteristic vectors of a symmetric matrix*, Pacific J. Math., 1 (1951), pp. 233–248.

25.

G. Kresse and J. Hafner,*Ab initio molecular dynamics for liquid metals*, Physical Review B, (1993), pp. 558–561.

26.

J. Nocedal,*Theory of algorithms for unconstrained optimization*, Acta Numerica, (1992), pp. 199–242.

27.

B. N. Parlett,*The Symmetric Eigenvalue Problem*, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

28.

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,*Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients*, Rev. Mod. Phys, 64 (1992), pp. 1045–1097.

29.

A. Perdon and G. Gambolati,*Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients*, Comp. Methods Appl. Mech. Engin., 56 (1986), pp. 251–264.

30.

A. Ruhe,*Iterative eigenvalue algorithms for large symmetric matrices*, in Numerische Behandlung von Eigenwertaaufgaben Oberwolfach 1972, Intl, Series Numerical Math. Volume 24, 1974, pp. 97–115.

31.

A. H. Sameh and J. A. Wisniewski,*A trace minimization algorithm for the generalized eigenvalue problem*, SIAM J. Numer. Anal., 19 (1982), pp. 1243–1259.

32.

S. T. Smith,*Geometric Optimization Methods for Adaptive Filtering*, PhD thesis, Harvard University, Cambridge, MA, 1993.

33.

S. T. Smith,*Optimization techniques on Riemannian manifolds*, in Hamiltonian and Gradient Flows, Algorithms and Control, A. Bloch, ed., Fields Institute Communications, American Mathematical Society, Providence, RI, 3 (1994), pp. 113–146.

34.

G. W. Stewart,*Error and perturbation bounds for subspaces associated with certain eigenvalue problems*, SIAM Review, 15 (1973), pp. 752–764.

35.

I. Štich, R. Car, M. Parrinello, and S. Baroni,*Conjugate gradient minimization of the energy functional: a new method for electronic structure calculation*, Phys. Rev. B., 39 (1989), pp. 4997–5004.

36.

M. W. Sung, R. Kawai, and J. Weare,*Packing transitions in nanosized* Li*clusters*, Physical Review Letter, 73 (1994), pp. 3552–3555.

37.

M. P. Teter, M. C. Payne, and D. C. Allan,*Solution of Schrödinger's equation for large systems*, Phys. Review B, 40 (1989), pp. 12255–12263.

38.

M. A. Townsend and G. E. Johnson,*In favor of conjugate directions: a generalized acceptable-point algorithm for function minimization*, J. Franklin Inst., 306 (1978).

39.

X. Yang, T. P. Sarkar, and E. Arvas,*A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix*, IEEE Trans. Acoust., Speech, Signal Processing, 37 (1989), pp. 1550–1556.