Skip to main content
Log in

Design, synthesis and use of binary encoded synthetic chemical libraries

  • Research Papers
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

With the advent of combinatorial chemistry a new paradigm is evolving in the field of drug discovery. The approach is based on an integration of chemistry, high-throughput screening and automation engineering. The chemistry arm is usually based on solid-phase synthesis technology as the preferred approach to library construction. One of the most powerful of the solid-phase methods is encoded split synthesis, in which the reaction history experience by each polymeric bead is unambiguously recorded. This split-and-pool approach, employing chemically robust tags, was used to construct a 85 000-membered dihydrobenzopyran library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon, E.M., Barrett, R.W., Dower, W.J., Fodor, S.P.A and Gallop, M.,Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions, J. Med. Chem., 37 (1994) 1385–1401.

    Google Scholar 

  2. Geysen, M.H., Meloen, R.H. and Barteling, S.J.,Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proc. Natl. Acad. Sci. USA, 81 (1984) 3998–4002.

    Google Scholar 

  3. Houghten, R.A.,General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids, Proc. Natl. Acad. Sci. USA, 82 (1985) 5131–5135.

    Google Scholar 

  4. DeWitt, S.H., Kiely, J.S., Stankovic, C.J., Schroeder, M.C., Reynolds-Cody, D.M. and Pavia, M.R.,‘Diversomers’: An approach to nonpeptide, nonoligomeric chemical diversity, Proc. Natl. Acad. Sci. USA, 90 (1993) 6909–6913.

    Google Scholar 

  5. Schnorrenberg, G. and Gerhardt, H.,Fully automatic simultaneous multiple peptide synthesis in micromolar scaleRapid synthesis of series of peptides for screening in biological assays, Tetrahedron, 45 (1989) 7759–7764.

    Google Scholar 

  6. Gausepohl, H., Bovlin, C., Kraft, M. and Frank, R.W.,Automated multiple peptide synthesis, Pept. Res., 5 (1992) 315–320.

    Google Scholar 

  7. Zuckermann, R.N. and Banville, S.C.,Automated peptide-resin deprotection — Cleavage by a robotic workstation, Pept. Res., 5 (1992) 169–174.

    Google Scholar 

  8. Read, J.L., Pirrung, M.C., Stryer, L., Lu, L.A.T. and Solas, D.,Light-directed, spatially addressable parallel chemical synthesis, Science, 251 (1991) 767–773.

    Google Scholar 

  9. Furka, A., Sebestyen, F., Asgedom, M. and Dibo, G.,General method for rapid synthesis of mullicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991) 487–493.

    Google Scholar 

  10. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmierski, W.M. and Knapp, R.J.,A new type of synthetic peptide library for identifying ligand-binding activity, Nature, 354 (1991) 82–86.

    Google Scholar 

  11. Houghten, R.A., Pinilla, C., Blondell, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H.,Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery, Nature, 354 (1991) 84–86.

    Google Scholar 

  12. Burgess, K., Lien, A.I. and Wang, N.,Combinatorial technologies involving reiterative division/coupling/recombination: Statistical considerations, J. Med. Chem., 37 (1994) 2985–2987.

    Google Scholar 

  13. Brummel, C.L., Lee, I.N.W., Zhou, Y. and Benkovic, S.J.,A mass spectrometric solution to the address problem of combinatorial libraries, Science, 264 (1994) 399–402.

    Google Scholar 

  14. Metzger, J.W., Kempter, C., Wiesmuller, K.N. and Jung, G.,Electrospray mass spectrometry and tandem mass spectrometry of synthetic multicomponent peptide mixtures: Determination of composition and purity, Anal. Biochem., 219 (1994) 261–277.

    Google Scholar 

  15. Egner, B.J., Langley, G.J. and Bradley, M.,Solid-phase chemistry: Direct monitoring by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A tool for combinatorial chemistry, J. Org. Chem., 60 (1995) 2652–2653.

    Google Scholar 

  16. Brenner, S. and Lerner, R.A.,Encoded combinatorial chemistry, Proc. Natl. Acad. Sci. USA, 89 (1992) 5381–5383.

    Google Scholar 

  17. Nielsen, J., Brenner, S. and Janda, K.D.,Synthetic methods for the implementation of encoded combinatorial chemistry, J. Am. Chem. Soc., 115 (1993) 9812–9813.

    Google Scholar 

  18. Needels, M.N., Jones, D.G., Tate, E.N., Heinkel, G.L., Koehersperger, L.M., Dower, W.J., Barrett, R.W. and Gallop, M.A.,Generation and screening of an oligonucleotide-encoded synthetic peptide library, Proc. Natl. Acad. Sci. USA, 90 (1993) 10700–10704.

    Google Scholar 

  19. Kerr, J.M., Banville, S.C. and Zuckermann, R.N.,Encoded combinatorial peptide libraries containing nonnatural amino acids, J. Am. Chem. Soc., 115 (1993) 2529–2531.

    Google Scholar 

  20. Nikolaiev, V., Stierandova, A., Krchñák, V., Seligmann, B., Lam, K.E., Salmon, S.E. and Lebl, M.,Peptide-encoding for structure determination of nonsequenceable polymers within libraries synthesized and tested on solid-phase supports, Pept. Res., 6 (1993) 161–170.

    Google Scholar 

  21. Lebl, M., Krchñák, V., Sepetov, N.F., Seligmann, B., Strop, P., Felder, S. and Lam, K.S.,One-bead-one-structure combinatorial libraries, Biopolymers (Pept. Sci.), 37 (1995) 177–198.

    Google Scholar 

  22. Ohlmeyer, M.H.J., Swanson, R.N., Dillard, L.W., Reader, J.C., Asouline, G., Kobayashi, R., Wigler, M. and Still, W.C.,Complex synthetic chemical libraries indexed with molecular tags, Proc. Natl. Acad. Sci. USA, 90 (1993) 10922–10926.

    Google Scholar 

  23. Nestler, H.P., Bartlett, P.A. and Still, W.C.,A general method for molecular tagging of encoded combinatorial chemistry libraries, J. Org. Chem., 59 (1994) 4723–4724.

    Google Scholar 

  24. Hill, H.H. and McMinn, D.G. (Eds.) Detectors for Capillary Chromatography, Chemical Analysis, Vol. 121, Wiley, New York, NY, U.S.A., 1992, pp. 83–107.

    Google Scholar 

  25. Baldwin, J.J., Burbaum, J.J., Henderson, I. and Ohlmeyer, M.H.J.,Synthesis of a small-molecule combinatorial library encoded with molecular tags, J. Am. Chem. Soc., 117 (1995) 5588–5589.

    Google Scholar 

  26. Burbaum, J.J., Ohlmeyer, M.H.J., Reader, J.C., Henderson, I., Dillard, L.W., Li, G., Randle, T.L., Sigal, N.N., Chelsky, D. and Baldwin, J.J.,A paradigm for drug discovery employing encoded combinatorial libraries, Proc. Natl. Acad. Sci. USA, 92 (1995) 6027–6031.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldwin, J.J. Design, synthesis and use of binary encoded synthetic chemical libraries. Mol Divers 2, 81–88 (1996). https://doi.org/10.1007/BF01718704

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01718704

Keywords

Navigation