[1]

Agler, J., "Subjordan operators",Jour. of Func. Anal., (to appear).

[2]

Agler, J., "Subjordan operators: Bishop's theorem, spectral inclusion, and spectral sets",Jour. of Op. Th., (to appear).

[3]

Arveson, W.B., "Subalgebras of C^{*}-algebras",Acta Math. 123 (1969).

[4]

Ball, J.A., "Rota's Theorem for general functional Hilbert spaces",P.A.M.S. 64 (1977), 55–61.

[5]

de Branges, L. and Rovnyak, J., "Appendix on square summable power series, Canonical models in quantum scattering theory,Perturbation Theory and its Applications in Quantum Mechanics, 347–392, Wiley, New York, 1966.

[6]

Bunce, J. and Salinas, N., "Completely positive maps of C^{*}-algebras and the left matricial spectra of an operator",Duke Math. Jour. 43 (1976), 747–774.

[7]

Choi, M.-D., "Positive linear maps on C^{*}-algebras", Univ. of Toronto, Dissertation, 1972.

[8]

Foias, C., "Some applications of spectral sets I: harmonic spectral measure",Acad. R.P. Romine Stud. Cerc. Math., 10 (1959), 365–401; English transl.,Amer. Math. Soc. Trans. (2) 61, (1967), 25–62

[9]

Lebow, A., "On von Neumann's theory of spectral sets",J. Math. Anal. and Appl. 7 (1963), 64–90.

[10]

Rota, G.-C., "On models for linear operators",Comm. Pure Appl. Math. 13 (1960), 469–472.

[11]

Rovnyak, J., "Some Hilbert spaces of analytic functions", Yale Dissertation, 1963.

[12]

Rudin, W.,Functional Analysis, McGraw-Hill, 1973.

[13]

Stinespring, W.F., "Positive functions on C^{*}-algebras", P.A.M.S. 6 (1955), 211–216.

[14]

Sz.-Nagy, B. and Foiaş, C., "Sur les contractions de l'espace de Hilbert. VIII",Acta Sci. Math. 25 (1964), 38–71.