, Volume 6, Issue 1, pp 12-18

Genetic design of real-time neural network controllers

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The use of genetic algorithms to design neural networks for real-time control of flows in sewerage networks is discussed. In many control applications, standard supervised learning techniques (such as back-propagation) cannot be used through lack of training data. Reinforcement learning techniques, such as genetic algorithms, are a computationally-expensive but viable alternative if a simulator is available for the system in question. The paper briefly describes why genetic algorithms and neural networks were selected, then reports the results of a feasibility study. This demonstrates that the approach does indeed have merits. The implications of high computational cost are discussed, in terms of scaling up to significantly complex problems.