, Volume 112, Issue 4, pp 189–205

Ultrastructure and immunocytochemistry of the nervous system of the larvae ofLingula anatina andGlottidia sp. (Brachiopoda)

  • Anders Hay-Schmidt

DOI: 10.1007/BF01632817

Cite this article as:
Hay-Schmidt, A. Zoomorphology (1992) 112: 189. doi:10.1007/BF01632817


Planktotrophic brachiopod larvae ofGlottidia sp. have been investigated for the occurrence of glyoxylic acid induced fluorescence in catecholamines (CA), and serotonin-like (5-HT) and neuropeptide FMRFamidelike (FMRFamide) immunoreactivity (ir). The location of CA, 5-HT-ir and FMRFamide-ir cells and processes were compared with the location of neurons and nerve processes found by transmission electron microscopy. The apical ganglion contains 5-HT-ir and FMRFamideir cells and processes and CA processes. From the dorsal part of the apical ganglion extend dorsal 5-HT-ir and FMRFamide-ir processes; from the nine pairs of tentacles stage (9. pt) they project to the ventral ganglion. These dorsal lophophore processes follow themusculus lophophoralis and them. brachialis. The 5-HT-ir and some of the FMRFamide-ir processes project along the muscles to the tentacles. From the ventral part of the apical ganglion extend CA, 5-HT-ir and FMRFamide-ir processes which follow the ciliary band of the lophophore and project to the tentacles. An intense band of CA processes was also observed in the lophophore, but the dorsal/ventral location could not be ascertained. The ventral ganglion contains 5-HT-ir and FMRFamide-ir cells which project either caudally on the metasome or rostrally as part of the dorsal lophophore processes. The neuropil of the ventral ganglion contains CA, 5-HT-ir and FMRFamide-ir processes. The nervous system of the planktotrophic brachiopod larvae seems to consist of a ventral lophophore system innervating the ciliary bands and a dorsal lophophore system including the ventral ganglion innervating the body musculature. The latter system develops later in ontogeny and is regarded as a specialization due to the presence of shells and associated musculature. The former system is regarded as homologous with the nervous system of actinotroch larvae (Phoronida) and planktotrophic larvae of the echinoderms.

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Anders Hay-Schmidt
    • 1
    • 2
  1. 1.Institute of Cell Biology and AnatomyUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.The Zoological MuseumUniversity of CopenhagenCopenhagen ØDenmark