Osteoporosis International

, Volume 2, Issue 2, pp 82–87

Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography

  • W. A. Kalender
Original Article

DOI: 10.1007/BF01623841

Cite this article as:
Kalender, W.A. Osteoporosis Int (1992) 2: 82. doi:10.1007/BF01623841


A high degree of uncertainty and irritation predominates in the assessment and comparison of radiation dose values resulting from measurements of bone mineral density of the lumbar spine by photon absorptiometry and X-ray computed tomography. The skin dose values which are usually given in the literature are of limited relevance because the size of the irradiated volumes, the relative sensitivity of the affected organs and the radiation energies are not taken into account. The concept of effective dose, sometimes called whole-body equivalent dose, has to be applied. A detailed analysis results in an effective dose value of about 1 µSv for absorptiometry and about 30 µSv for computed tomography when low kV and mAs values are used. Lateral localizer radiographs, which are necessary for slice selection in CT, mean an additional dose of 30 µSv. Lateral X-ray films of the spine which are frequently taken in combination with absorptiometry result in a dose of 700 µSv or more. The concept of effective dose, the basic data and assumptions used in its assessment and a comparison with other dose burdens (for example the natural background radiation, of typically 2400 µSv per year) are discussed in detail.


Bone mineral densityDual-energy X-ray absorptiometryComputed tomographyRadiation dose

Copyright information

© European Foundation for Osteoporosis 1992

Authors and Affiliations

  • W. A. Kalender
    • 1
  1. 1.Siemens AG Medizinische TechnikErlangenGermany