[1]

Adams, M. B., B. C. Lévy, and A. S. Willsky, “Linear Smoothing for Descriptor Systems,”*Proc. 23rd IEEE Conf. Dec. and Control*, pp. 1–6, Las Vegas, NV, December 1984.

[2]

Aplevich, J. D., “Time Domain Input-Output Representations of Linear Systems,”

*Automatica*, Vol.

**17**, pp. 509–522, 1979.

Google Scholar[3]

Armentano, V. A., “Eigenvalue Placement for Generalized Linear Systems,”

*Systems and Control Letters*, Vol.

**4**. pp. 199–202, June 1984a.

Google Scholar[4]

Armentano, V. A., “The Pencil (sE-A) and Controllability-Observability for Generalized Linear Systems: A Geometric Approach,”*Proc. 23rd IEEE Conf. Dec. and Control*, pp. 1507–1510, Las Vegas, NV, December 1984b.

[5]

Armentano, V. A., “Exact Disturbance Decoupling by a Proportional-Derivative State Feedback Law,” preprint, 1985.

[6]

Bernhard, P., “On Singular Implicit Linear Dynamical Systems,”

*SIAM J. Control and Optim.*, Vol.

**20**, No. 5, pp. 612–633, September 1982.

Google Scholar[7]

Bhattacharyya, S. P., and V. A. Oliviera, “Simulation and Control of Discrete Generalized State Space Systems via Silverman's Algorithm,” TCSL Research Memorandum 81-10, 1981.

[8]

Brayton, R. K., F. G. Gustavson, and G. D. Hachtel, “A New Efficient Algorithm for Solving Differential-Algebraic Systems Using Implicit Backward Differentiation Formulae,”

*Proc. IEEE*, Vol.

**60**, No. 1 pp. 98–114, January 1972.

Google Scholar[9]

Brenan, K. E., “Difference Approximation for Higher Index Differential-Algebraic Systems with Applications in Trajectory Control,”*Proc. 23rd IEEE Conf. Dec. and Control*, pp. 291–292, December 1984.

[10]

Brunovsky, P., “A Classification of Linear Controllable Systems,”

*Kybernetika*, Vol.

**6**, pp. 173–188, 1970.

Google Scholar[11]

Bryson, A. E., Jr., and Y.-C. Ho,

*Applied Optimal Control*, New York: Hemisphere, 1975.

Google Scholar[12]

Campbell, S. L., C. D. Meyer, Jr., and N. J. Rose, “Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Coefficients,”

*SIAM J. Appl. Math.*, Vol.

**10**, pp. 542–551, 1976.

Google Scholar[13]

Campbell, S. L.,

*Singular Systems of Differential Equations*, San Francisco: Pitman, 1980.

Google Scholar[14]

Cobb, D., “Feedback and Pole-Placement in Descriptor Variable Systems,”

*Int. J. Control*, Vol.

**33**, No. 6, pp. 1135–1146, 1981.

Google Scholar[15]

Cobb, D., “On the Solution of Linear Differential Equations with Singular Coefficients,”

*J. Diff. Eq.*, Vol.

**46**, pp. 310–323, 1982.

Google Scholar[16]

Cobb, D., “Descriptor Variable Systems and Optimal State Regulation,”

*IEEE Trans. Automat. Control*, Vol.

**AC-28**, No. 5, pp. 601–611, May 1983.

Google Scholar[17]

Cobb, J. D.,*Descriptor Variable and Generalized Singularly Perturbed Systems: A Geometric Approach*, Ph.D. Thesis, Department of Electrical Engineering, University of Illinois, 1980.

[18]

Cobb, J. D., “Controllability, Observability, and Duality in Singular Systems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-29** pp. 1076–1082, 1984a.

Google Scholar[19]

Cobb, J. D., “Slow and Fast Stability in Singular Systems,”*Proc. 23rd IEEE Conf. Dec. and Control*, pp. 280–282, December 1984b.

[20]

DeClaris, N., and A. Rindos, “Semistate Analysis of Neural Networks in Apysia Californica,”*Proc. 27th MSCS*, Morgantown, WV, pp. 686–689, 1984.

[21]

Dziurla, B., and R. Newcomb, “The Drazin Inverse and Semi-State Equations,”*Proc. 4th Int. Symp. Math. Theory of Networks and Systems*, pp. 283–289, Delft, The Netherlands, 1979.

[22]

Dziurla, B., and R. W. Newcomb, “An Example of the Continuation Method of Solving Semistate Equations,”*Proc. 23rd IEEE Conf. Dec. and Control*, pp. 274–279, December 1984.

[23]

Fettweis, A., “On the Algebraic Derivation of State Equations,”

*IEEE Trans. Circuit Theory*, Vol.

**CT-16**, pp. 171–175, 1969.

Google Scholar[24]

Gantmacher, F. R.,

*Theory of Matrices*, New York: Chelsea Pub. Co., 1959.

Google Scholar[25]

Gear, C. W., “Simultaneous Numerical Solution of Differential-Algebraic Equations,”

*IEEE Trans. Circuit Theory*, Vol.

**CT-18**, pp. 89–95, 1971.

Google Scholar[26]

Gohberg, I., and L. Rodman, “On Spectral Analysis of Non-Monic Matrix and Operator Polynomials, I. Reduction to Monic Polynomials,”

*Israel J. Mathematics*, Vol.

**30**, pp. 133–151, 1978.

Google Scholar[27]

Hayton, G. E., P. Fretwell, and A. C. Pugh, “Fundamental Equivalence of Generalized State Space Systems,”*Proc. 23rd IEEE Conf. Decision and Control*, pp. 289–290, Las Vegas, NV, December 1984.

[28]

Karcanias, N., and G. E. Hayton, “State-Space and Transfer Function Invariant Infinite Zeros: A Unified Approach,”*Proc. JACC*, paper TA-4C, Charlottesville, VA, 1981a.

[29]

Karcanias, N., and G. E. Hayton, “Generalized Autonomous Dynamical Systems, Algebraic Duality and Geometric Theory,”*IFAC VIII Triennial World Congress*, Kyoto, Japan, August 1981b.

[30]

Khasina, E. N., “Control of Singular Linear Dynamic Systems,”

*Autom. Rem. Control*, Vol.

**43**, No. 4, pp. 448–455, April 1982.

Google Scholar[31]

Kokotovic, P. V., R. E. O'Malley, Jr., and P. Sannuti, “Singular Perturbations and Order Reduction in Control Theory—An Overview,”

*Automatica*, Vol.

**12**, pp. 123–132, March 1976.

Google Scholar[32]

Kronecker, L., “Algebraishe Reduction der Schaaren Bilinearer Formen,”*S.-B. Akad, Berlin*, pp. 763–776, 1980.

[33]

Lancaster, P., “A Fundamental Theorem on Lambda Matrices with Applications: 1. Ordinary Differential Equations with Constant Coefficients,”

*Linear Algebra and Its Applications*, Vol.

**18**, pp. 189–211, 1977.

Google Scholar[34]

Langenhop, C. E., “The Laurent Expansion for a Nearly Singular Matrix,”

*Linear Algebra and Its Applications*, Vol.

**4**, pp. 329–340, 1971.

Google Scholar[35]

Langenhop, C. E., “Controllability and Stabilization of Regular Singular Linear Systems with Constant Coefficients,” Dept. of Math., S. Illinois University, December 6, 1979.

[36]

Larson, R. E., D. G. Luenberger, and D. N. Stengel, “Descriptor Variable Theory and Spatial Dynamic Programming,” Top. Rep., Systems Control, Inc., 1978.

[37]

Lewis, F., “Descriptor Systems: Expanded Descriptor Equation and Markov Parameters,”

*IEEE Trans. Automat. Control*, Vol.

**AC-28**, No. 5, pp. 623–627, May 1983a.

Google Scholar[38]

Lewis, F., “Inversion of Descriptor Systems,”*Proc. ACC*, pp. 1153–1158, San Francisco, CA, June 1983b.

[39]

Lewis, F. L., “Adjoint Matrix, Bézout Theorem, Cayley-Hamilton Theorem, and Fadeev's Method for the Matrix Pencil (sE-A),”*Proc. 22nd Conf. Dec. and Control*, pp. 1282–1288, December 1983c.

[40]

Lewis, F. L., “Descriptor Systems: Decomposition into Forward and Backward Subsystems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-29**, No. 2, pp. 167–170, February 1984.

Google Scholar[41]

Lewis, F. L. “Fundamental, Reachability, and Observability Matrices for Discrete Descriptor Systems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-30**, pp. 502–505, May 1985a.

Google Scholar[42]

Lewis, F. L., “Preliminary Notes on Optimal Control for Singular Systems,”*Proc. 24th IEEE Conf. on Dec. and Control*, Ft. Lauderdale, FL, December 1985b.

[43]

Lewis, F. L., “Optimal Control for Singular Systems,” in preparation, 1986.

[44]

Lewis, F. L., and K. Ozcaldiran, “The Relative Eigenstructure Problem and Descriptor Systems,” SIAM National Meeting, Denver, CO, June 1983.

[45]

Lewis, F. L., and K. Ozcaldiran, “Reachability and Controllability for Descriptor Systems,”*Proc. 27th Midwestern Symp. Circuits and Sys.*, pp. 690–695, Morgantown, WV, June 1984.

[46]

Lewis, F. L., and K. Ozcaldiran, “On the Eigenstructure Assignment of Singular Systems,”*Proc. 24th IEEE Conf. on Dec. and Control*, Ft. Lauderdale, FL, December 1985.

[47]

Lostedt, P., and L. R. Petzold, “Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints,” Sandia National Laboratories, Report SAND83-8877, 1983.

[48]

Luenberger, D. G., “Dynamic Equations in Descriptor Form,”

*IEEE Trans. Automat. Control*, Vol.

**AC-22**, pp. 312–321, 1977.

Google Scholar[49]

Luenberger, D. G., “Time-Invariant Descriptor Systems,”

*Automatica*, Vol.

**14**, pp. 473–480, 1978.

Google Scholar[50]

Luenberger, D. G., “Nonlinear Descriptor Systems,”

*J. Economic Dynamics and Control*, Vol.

**1**, pp. 219–242, 1979.

Google Scholar[51]

Luenberger, D. G., and A. Arbel, “Singular Dynamic Leontief Systems,”*Econometrica*, 1977.

[52]

Manke, J. W.,*et al.*, “Solvability of Large-Scale Descriptor Systems,” Boeing Computer Services Co., 1978.

[53]

McMillan, B., “Introduction to Formal Realizability Theory,”

*Bell Syst. Tech. Journal*, Vol.

**31**, No. 2, pp. 217–279, March 1952; Vol.

**31**, No. 4, pp. 541–600, May 1952.

Google Scholar[54]

Mertzios, B. G., “Leverrier's Algorithm for Singular Systems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-29**, No. 7, pp. 652–653, July 1984.

Google Scholar[55]

Molinari, B. P., “Structural Invariants of Linear Multivariable Systems,”

*Int. J. Control*, Vol.

**28**, pp. 525–535, 1979.

Google Scholar[56]

Moore, B. C., “On the Flexibility Offered by State Feedback in Multivariable Systems Beyond Closed Loop Eigenvalue Assignment,”*IEEE Trans. Automat. Control*, pp. 689–692, October 1976.

[57]

Mukundan, R., and W. Dayawansa, “Feedback Control of Singular Systems — Proportional and Derivative Feedback of the State,”

*Int. J. Systems Sci.*, Vol.

**14**, pp. 615–632, 1983.

Google Scholar[58]

Newcomb, R. W.,

*Linear Multiport Synthesis*, New York: McGraw-Hill, 1966.

Google Scholar[59]

Newcomb, R. W., “The Semistate Description of Nonlinear Time-Variable Circuits,”

*IEEE Trans. Circuits and Systems*, Vol.

**CAS-28**, No. 1, pp. 62–71, January 1981.

Google Scholar[60]

Newcomb, R. W., “Semistate Design Theory: Binary and Swept Hysteresis,”

*J. Circuits, Sys., Sig. Proc.*, Vol.

**1**, No. 2, pp. 203–216, 1982.

Google Scholar[61]

Ozcaldiran, K.,

*Control of Descriptor Systems*, Ph.D. Thesis, School of Electrical Engineering, Georgia Institute of Technology, Atlanta, GA, June 1985.

Google Scholar[62]

Ozcaldiran, K., “A Geometric Characterization of the Reachable and the Controllable Subspaces of Descriptor Systems,”*Circuits, Sys., Sig. Proc.*, this issue, 1986.

[63]

Ozcaldiran, K., and F. L. Lewis, “A Result on the Placement of Infinite Eigenvalues in Descriptor Systems,” Proc.*ACC*, pp. 366–371, San Diego, CA, June 1984.

[64]

Pandolfi, L., “Controllability and Stabilization for Linear Systems of Algebraic and Differential Equations,”

*J. Optimization Theory and Applic.*, Vol.

**30**, pp. 601–620, 1980.

Google Scholar[65]

Pandolfi, L., “On the Regulator Problem for Linear Degenerate Control Systems,”

*JOTA*, Vol.

**33**, No. 2, pp. 241–254, February 1981.

Google Scholar[66]

Pugh, A. C., and G. E. Hayton, “The Extended State Space and Matrix Pencils,”*Proc. 23rd IEEE Conf. Dec. and Control*, Las Vegas, NV, December 1984.

[67]

Pugh, A. C., P. Fretwell, and G. E. Hayton, “Some Transformations of Matrix Equivalence Arising from Linear Systems Theory,”*Proc. ACC*, pp. 633–637, San Francisco, CA June 1983.

[68]

Pugh, A. C., and P. A. Ratcliffe, “On the Zeros and Poles of a Rational Matrix,”

*Int. J. Control*, Vol.

**30**, pp. 213–226, 1979.

Google Scholar[69]

Rose, N. J., “The Laurent Expansion of a Generalized Resolvent with Some Applications,”

*SIAM J. Math. Anal.*, Vol.

**9**, pp. 751–758, 1978.

Google Scholar[70]

Rosenbrock, H. H.,

*State-Space and Multivariable Theory*, London: Nelson, 1970.

Google Scholar[71]

Rosenbrock, H. H., “Structural Properties of Linear Dynamical Systems,”

*Int. J. Control*, Vol.

**20**, 191–202, 1974.

Google Scholar[72]

Rosenbrock, H. H., and A. C. Pugh, “Contributions to a Hierarchical Theory of Systems,”

*Int. J. Control*, Vol.

**19**, No. 5, pp. 845–867, 1974.

Google Scholar[73]

Saidahmed, M. T., and M. E. Zaghloul, “On the Generalized State-Space Singular Linear Systems,”*Proc. IEEE Int. Symp. Circuits and Systems*, pp. 653–656, Newport Beach, CA, 1983.

[74]

Sastry, S. S., and C. A. Desoer, “Jump Behavior of Circuits and Systems,”

*IEEE Trans. Circuits and Systems*, Vol.

**CAS-28**, No. 12, pp. 1109–1123, December 1981.

Google Scholar[75]

Silverman, L. M., “Discrete Riccati Equations: Alternative Algorithms, Asymptotic Properties, and System Theory Interpretations,”

*Control and Dynamic Systems*, Vol.

**12**, C. T. Leondes, ed., pp. 313–386, New York: Academic, 1976.

Google Scholar[76]

Sincovec, R. F., A. M. Erisman, E. L. Yip, and M. A. Epton, “Analysis of Descriptor Systems Using Numerical Algorithms,”

*IEEE Trans. Automat. Control*, Vol.

**AC-26**, No. 1, pp. 139–147, February 1981.

Google Scholar[77]

Singh, S. P. and R-W Liu, “Existence of State Equation Representation of Linear Large-Scale Dynamical Systems,”

*IEEE Trans. Circuit Theory*, Vol.

**CT-20**, No. 3, pp. 239–246, May 1973.

Google Scholar[78]

Spong, M. W., “A Semistate Approach to Feedback Stabilization of Neutral Delay Systems,”*Circuits, Sys., Sig. Proc.*, this issue, 1986.

[79]

Stevens, B. L., “Modeling, Simulation, and Analysis with State Variables,” Report LG84RR002, Lockheed-Georgia Co., Marietta, GA, June 1984.

Google Scholar[80]

Stott, B., “Power System Response Dynamic Calculations,”

*Proc. IEEE*, Vol.

**67**, No. 2, pp. 219–241, February 1979.

Google Scholar[81]

Van Dooren, P., “The Computation of Kronecker's Canonical Form of a Singular Pencil,”

*Linear Algebra and Its Applications*, Vol.

**27**, pp. 103–140, 1979.

Google Scholar[82]

Van Dooren, P., “The Generalized Eigenstructure Problem in Linear System Theory,”

*IEEE Trans. Automat. Control*, Vol.

**AC-26**, pp. 111–129, 1981.

Google Scholar[83]

Verghese, G. C.,*Infinite-Frequency Behavior in Generalized Dynamical Systems*, Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University, 1978.

[84]

Verghese, G. C., and T. Kailath, “Impulsive Behavior in Dynamical Systems: Structure and Significance,”*Proc. 4th Int. Symp, Math. Theory, Networks, Sys.*, pp. 162–168, Delft, The Netherlands, July 1979a.

[85]

Verghese, G. C., and T. Kailath, “Eigenvector Chains for Finite and Infinite Zeros of Rational Matrices,”*Proc. 18th Conf. Dec. and Control*, pp. 31–32, Ft. Lauderdale, FL, December 1979b.

[86]

Verghese, G. C., “Further Notes on Singular Systems,”*Proc. JACC*, paper TA-4B, Charlottesville, VA, June 1981.

[87]

Verghese, G. C., B. C. Lévy, and T. Kailath, “A Generalized State-Space for Singular Systems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-26**, pp. 811–831, 1981.

Google Scholar[88]

Verghese, G., P. Van Dooren, and T. Kailath, “Properties of the System Matrix of a Generalized State-Space System,”

*Int. J. Control*, Vol.

**30**, No. 2, pp. 235–243, 1979.

Google Scholar[89]

Weierstrass, K., “Zur Theorie der Bilinearen und Quadratischen Formen,”*Monatsh. Akad. Wiss. Berlin*, pp. 310–338, 1867.

[90]

Wilkinson, J. H., “Linear Differential Equations and Kronecker's Canonical Form,”

*Recent Advances in Numerical Analysis*, C. de Boor and G. Golub, ed., pp. 231–265, New York: Academic, 1978.

Google Scholar[91]

Wong, K. T., “The Eigenvalue Problem λTx + Sx,”

*J. Diff. Eq.*, Vol.

**16**, pp. 270–280, 1974.

Google Scholar[92]

Wonham, W. M.,

*Linear Multivariable Control: A Geometric Approach*, 2nd ed., New York: Springer-Verlag, 1979.

Google Scholar[93]

Yip, E. L., and R. F. Sincovec, “Solvability, Controllability, and Observability of Continuous Descriptor Systems,”

*IEEE Trans. Automat. Control*, Vol.

**AC-26**, No. 3, pp. 702–707, June 1981.

Google Scholar[94]

Zaghloul, M. E., and R. W. Newcomb, “Semistate Implementation: Differentiator Example,”*Circuits, Systems, and Sig. Proc.*, this issue.

[95]

Zeeman, E. C., “Duffing's Equation in Brain Modelling,”*J. Inst. Math. and Its App.*, pp. 207–14, July 1976.