[1]

A.R. Conn, N.I.M. Gould and Ph.L. Toint, “Global convergence of a class of trust region algorithms for optimization with simple bounds,”*SIAM Journal on Numerical Analysis* 25 (1988) 433–460 (with a correction given in*SIAM Journal on Numerical Analysis* 26 (1989) 764–767).

[2]

A.R. Conn, N.I.M. Gould and Ph.L. Toint, “Testing a class of methods for solving minimization problems with simple bounds on the variables,”*Mathematics of Computation* 50 (1988) 399–430.

[3]

J.E. Dennis and J.J. Moré, “Quasi-Newton methods, motivation and theory,”*SIAM Review* 19 (1977) 46–89.

[4]

J.E. Dennis and R.B. Schnabel,*Numerical Methods for Unconstrained Optimization and Nonlinear Equations* (Prentice-Hall, Englewood Cliffs, NJ, 1983).

[5]

A.V. Fiacco and G.P. McCormick,*Nonlinear Programming* (Wiley, New York, 1968).

[6]

R. Fletcher,*Practical Methods of Optimization: Unconstrained Optimization* (Wiley, Chichester, 1980).

[7]

R.P. Ge and M.J.D. Powell, “The convergence of variable metric matrices in unconstrained optimization,”*Mathematical Programming* 27 (1983) 123–143.

[8]

P.E. Gill, W. Murray and M.H. Wright,*Practical Optimization* (Academic Press, New York, 1981).

[9]

A. Griewank and Ph.L. Toint, “Partitioned variable metric updates for large structured optimization problems,”*Numerische Mathematik* 39 (1982) 119–137.

[10]

J.J. Moré, “Recent developments in algorithms and software for trust region methods,” in: A. Bachem, M. Grötschel and B. Korte, eds.,*Mathematical Programming: The State of the Art* (Springer, Berlin, 1983).

[11]

J.M. Ortega and W.C. Rheinboldt,*Iterative Solution of Nonlinear Equations in Several Variables* (Academic Press, New York, 1970).

[12]

M.J.D. Powell, “A new algorithm for unconstrained optimization,” in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,*Nonlinear Programming* (Academic Press, New York, 1970).

[13]

G. Schuller, “On the order of convergence of certain quasi-Newton methods,”*Numerische Mathematik* 23 (1974) 181–192.

[14]

D.C. Sorensen, “An example concerning quasi-Newton estimates of a sparse Hessian,”*SIGNUM Newsletter* 16 (1981) 8–10.

[15]

Ph.L. Toint, “On the superlinear convergence of an algorithm for solving a sparse minimization problem,”*SIAM Journal on Numerical Analysis* 16 (1979) 1036–1045.