[1]

S. Agmon,*Lectures on elliptic boundary value problems* (Van Nostrand, Princeton, 1965).

[2]

P.M. Anselone,*Collectively compact operator approximation theory and applications to integral equations* (Prentice-Hall, Englewood Cliffs, 1971).

[3]

C.G. Broyden, “A class of methods for solving nonlinear simultaneous equations“,*Mathematics of Computation* 19(1965) 577–593.

[4]

C.G. Broyden, “The convergence of single-rank quasi-Newton methods“,*Mathematics of Computation* 24(1970) 365–382.

[5]

C.G. Broyden, J.E. Dennis, Jr., and J.J. Moré, “On the local and superlinear convergence of quasi-Newton methods“,*Journal of Institute of Mathematics and Applications* 12(1973) 223–246.

[6]

D.W. Decker and C.T. Kelley, “Broyden's method for a class of problems having singular Jacobian at the root“,*SIAM Journal Control and Optimization* 22(1985) 566–574.

[7]

J.E. Dennis, Jr., “Toward a unified convergence theory for Newton-like methods“, in: L.B. Rall, ed.,*Nonlinear functional analysis and applications* (Academic Press, New York, London, 1971) pp. 425–472.

[8]

J.E. Dennis, Jr. and J.J. Moré, “A characterization of superlinear convergence and its application to quasi-Newton methods“,*Mathematics of Computation* 28(1974) 543–560.

[9]

J. Dieudonné,*Foundations of modern analysis* (Academic Press, New York and London, 1960).

[10]

Z. Fortuna, “Some convergence properties of the conjugate gradient method in Hilbert space“,*SIAM Journal on Numerical Analysis* 16(1979) 380–384.

[11]

A Griewank, “The superlinear convergence of secant method on mildly non-linear problems in Hilbert space”, preprint, Southern Methodist University (Dallas, August 1984).

[12]

W.A. Gruver and E. Sachs,*Algorithmic methods in optimal control* (Pitman, Boston, London, Melbourne, 1981).

[13]

L.B. Horwitz and P.E. Sarachik, “Davidon's methods in Hilbert space“,*SIAM Journal on Applied Mathematics* 16(1968) 676–695.

[14]

*L.V. Kantorovich*, “Functional analysis and applied mathematics“,*Upspekhi Matematiki Nauk* 3(1948) 89–185.

[15]

L.V. Kantorovich and G.P. Akilov,*Functional analysis in normed spaces* (MacMillan, New York, 1964).

[16]

T. Kato,*Perturbation theory for linear operators* (Springer-Verlag, New York, 1966).

[17]

R.H. Martin,*Nonlinear operators and differential equations in Banach spaces* (Wiley, New York-Chichester-Brisbane-Toronto, 1976).

[18]

K. Madsen, “Minimax solutions of nonlinear equations without calculating derivatives“,*Mathematical Programming Study* 3(1975) 110–126.

[19]

R.V. Mayorga and V.H. Quintana, “A family of variable metric methods in function space, without exact line searches“,*Journal of Optimization Theory and Applications* 31 (1980) 303–329.

[20]

R.H. Moore, “Approximations to nonlinear operator equations and Newton'smethods“,*Numerische Mathematik* 12(1968) 23–34.

[21]

J.J. Moré and J.A. Trangenstein, “On the global convergence of Broyden's method“,*Mathematics of Computation* 30(1976) 523–540.

[22]

E. Sachs, “Global convergence of quasi-Newton-type algorithms for some nonsmooth optimization problems“,*Journal of Optimization Theory and Applications* 40(1983) 201–219.

[23]

E. Sachs, “Convergence rates of quasi-Newton algorithms for some nonsmooth optimization problems“,*SIAM Journal on Control and Optimization* 23(1985) 401–418.

[24]

M.J. Todd, “Quasi-Newton updates in abstract vector spaces“,*SIAM Review* 26(1984) 367–377.

[25]

H. Tokumaru, N. Adachi, and K. Goto, “Davidon's method for minimization problems in Hilbert space with an application to control problems“,*SIAM Journal on Control and Optimization* 8(1970) 163–178.

[26]

P.R. Turner and E. Huntley, “Variable metric methods in Hilbert space with applications to control problems“,*Journal of Optimization Theory and Applications* 19(1976) 381–400.

[27]

R. Winther, “A Numerical Galerkin Method for a Parabolic Problem”, Ph.D. Thesis, Cornell University (Ithaca, NY, 1977).