E. Balas, “A linear characterization of permutation vectors,” Management Science Research Report No. 364, Carnegie-Mellon University, Pittsburgh, PA (1975).

E. Balas and W. Pulleyblank, “The perfectly matchable subgraph polytope of bipartite graphs,”*Networks* 13 (1983) 495–516.

R.E. Bixby, W.H. Cunningham and D.M. Topkis, “The partial order of a polymatroid extreme point,”*Mathematics of Operations Research* 10 (1985) 367–378.

O. Boruvka, “O jistém problému minimálnim“ (with extended abstract in German),*Acte Societatis Scientiarium Naturalium Moravicae, Tomus III, Fasc. 3, Signature* F23 (1926) 37–58.

Cai Mao-Cheng, “Arc-disjoint arborescences of diagraphs,”*Journal of Graph Theory* 7 (1983) 235–240.

W. Cook, “On box totally dual integral polyhedra,”*Mathematical Programming* 34 (1986) 48–61.

W.H. Cunningham, “An unbounded matroid intersection polyhedron,”*Linear Algebra and its Applications* 16 (1977) 209–215.

W.H. Cunningham, “Optimal attack and reinforcement of a network,”*Journal of the Association for Computing Machinery* 32 (1985) 549–561.

W.H. Cunningham, “On submodular function minimization,”*Combinatorica* 5 (1985) 185–192.

W.H. Cunningham and A. Frank, “A primal-dual algorithm for submodular flows,”*Mathematics of Operations Research* 10 (1985) 251–262.

F.D.J. Dunstan, “Matroids and submodular functions,”*Quarterly Journal of Mathematics Oxford* 27 (1976) 339–347.

J. Edmonds, “Minimum partition of a matroid into independent sets,”*Journal of Research of the National Bureau of Standards Section B* 69 (1965) 67–72.

J. Edmonds, “Lehman's switching game and a theorem of Tutte and Nash-Williams,”*Journal of Research of the National Bureau of Standards Section B* 69 (1965) 73–77.

J. Edmonds, “Submodular functions, matroids, and certain polyhedra,” in: R. Guy, H. Hanani, N. Sauer and J. Schonheim, eds.,*Combinatorial Structures and their Applications* (Gordon and Breach, New York 1970) pp. 69–87.

J. Edmonds, “Matroids and the greedy algorithm,”*Mathematical Programming* 1 (1971) 127–136.

J. Edmonds, “Edge-disjoint branchings,” in: R. Rustin, ed.,*Combinatorial Algorithms* (Algorithmic Press, New York, 1973) pp. 91–96.

J. Edmonds, “Matroid intersection,”*Annals of Discrete Mathematics* 4 (1979) 39–49.

J. Edmonds and R. Giles, “A min-max relation for submodular functions on graphs,”*Annals of Discrete Mathematics* 1 (1977) 185–204.

J. Fonlupt and A. Zemirline, “On the number of common bases of two matroids,”*Discrete Mathematics* 45 (1983) 217–228.

L.R. Ford and D.R. Fulkerson,*Flows in Networks* (Princeton University Press, Princeton, NJ, 1962).

A. Frank, “Kernel systems of directed graphs,”*Acta Universities Szegediensis* 41 (1979) 63–76.

A. Frank, “On the orientation of graphs,”*Journal of Combinatorial Theory B* 28 (1980) 251–261.

A. Frank, “How to make a digraph strongly connected,”*Combinatorica* 1 (1981) 145–153.

A. Frank, “On disjoint trees and arborescences,” in: L. Lovász and V.T. Sós, eds.,*Algebraic Methods in Graph Theory* (North-Holland, Amsterdam-New York, 1981) pp. 159–170.

A. Frank, “A weighted matroid intersection algorithm,”*Journal of Algorithms* 2 (1981) 328–336.

A. Frank, “An algorithm for submodular functions on graphs,” in: A. Bachem, M. Grötschel and B. Korte, eds., Bonn Workshop on Combinatorial Optimization, Bonn 1980, North-Holland Mathematics Studies 66 (North-Holland, Amsterdam-New York, 1982) pp. 97–120.

A. Frank, “Finding feasible vectors of Edmonds-Giles polyhedra,”*Journal of Combinatorial Theory B* 36 (1984) pp. 221–239.

A. Frank, “Submodular flows,” in: W.R. Pulleyblank, ed.,*Progress in Combinatorial Optimization* (Academic Press, Toronto, Ontario, 1984) pp. 147–166.

A. Frank, “Generalized polymatroids,” in: A. Hajnal et. al., eds.,*Finite and Infinite Sets* (North-Holland, Amsterdam-New York, 1984) pp. 285–294.

A. Frank and A. Gyárfás, “How to orient the edges of a graph,” in: A. Hajnal and V.T. Sós, eds.,*Combinatorics* (North-Holland, Amsterdam-New York, 1978) pp. 353–363.

A. Frank and É. Tardos, “Matroids from crossing families,” in: A. Hajnal et. al., eds.,*Finite and Infinite Sets* (North-Holland, Amsterdam-New York, 1984) pp. 295–304.

A. Frank and É. Tardos, “An algorithm for the unbounded matroid intersection polyhedron,” in: R.E. Burkard, R.A. Cunninghame-Green and U. Zimmermann, eds.,*Algebraic and Combinatorial Methods in Operations Research*, North-Holland Mathematics Studies 95,*Annals of Discrete Mathematics* 19 (North-Holland, Amsterdam-New York, 1984) pp. 129–134.

A. Frank and É. Tardos, “An application of submodular flows,” to appear in*Linear Algebra and its Applications.*

A. Frank, A. Sebö and É. Tardos, “Covering directed and odd cuts,”*Mathematical Programming Studies* 22 (1984) 99–112.

S. Fujishige, “Algorithms for solving the independent flow problems,”*Journal of the Operations Research Society of Japan* 21 (1978) 189–203.

S. Fujishige, “Structures of polyhedra determined by submodular functions on crossing families,”*Mathematical Programming* 29 (1984) 125–141.

S. Fujishige, “A note on Frank's generalized polymatroids,”*Discrete Applied Mathematics* 7 (1984) 105–109.

S. Fujishige, “A characterization of faces of the base polyhedron associated with a submodular system,”*Journal of the Operations Research Society of Japan* 27 (1984) 112–128.

S. Fujishige, “Submodular systems and related topics,” in B. Korte and K. Ritter, eds.,*Mathematical Programming Study* 22 (1984) 113–131.

S. Fujishige and N. Tomizawa, “A note on submodular functions on distributive lattices,”*Journal of the Operations Research Society of Japan* 26 (1983) 309–318.

D. Gale, “Optimal assignments in an ordered set: An application of matroid theory,”*Journal of Combinatorial Theory* 4 (1968) 176–190.

R. Giles, “Submodular functions, graphs and integer polyhedra,” Ph.D. Thesis, Department of Combinatorics and Optimization, University of Waterloo, Canada, 1975.

H. Gröflin and A.J. Hoffman, “On matroid intersections,”*Combinatorica* 1 (1981) 43–47.

H. Gröflin and T.M. Liebling, “Connected and alternating vectors, polyhedra and algorithms,”*Mathematical Programming* 20 (1981) 233–244.

M. Grötschel, L. Lovász and A. Schrijver, “The ellipsoid method and its consequences in combinatorial optimization,”*Combinatorica* 1 (1981) 169–187.

R. Hassin, “Minimum cost flow with set-constraints,”*Networks* 12 (1982) 1–22.

D.A. Higgs, “Strong maps of geometries,”*Journal of Combinatorial Theory* 5 (1968) 185–191.

A. Hoffman, “Some recent applications of the theory of linear inequalities to extremal combinatorial analysis,” in:*Proceedings of the Symposium of Applied Mathematics* 10 (American Mathematical Society, Providence RI, 1960) pp. 113–127.

A. Hoffman, “A generalization of max-flow-min-cut,”*Mathematical Programming* 6 (1974) 352–359.

A.J. Hoffman, “Ordered sets and linear programming,” in: I. Rival, ed.,*Ordered Sets* (D. Reidel Publishing Company, Dordrecht-Boston, MA, 1982) pp. 619–654.

T.C. Hu,*Integer Programming and Network Flows* (Addison-Wesley Publishing Company, Reading MA, 1969) pp. 173–175.

H. Imai, “Network-flow algorithms for lower truncated transversal polymatroids,”*Journal of the Operations Research Society of Japan* 26 (1983) 186–210.

E.L. Lawler, “Matroid intersection algorithms,”*Mathematical Programming* 9 (1975) 31–56.

E.L. Lawler and C.U. Martel, “Computing maximal “polymatroidal” network flows,”*Mathematics of Operations Research* (1982) 334–347.

L. Lovász, “A generalization of König's theorem,”*Acta Mathematica Academiae Scientiarum Hungaricae* 21 (1970) 443–446.

L. Lovász, “Flats in matroids and geometric graphs“ in: P.J. Cameron, ed.,*Combinatorial Surveys, Proceedings of the 6th British Combinatorial Conference* (Academic Press, London, 1977) pp. 45–86.

L. Lovász, “Submodular functions and convexity,” in: A. Bachem, M. Grötschel and B. Korte, eds.,*Mathematical Programming: The State of the Art* (Springer-Verlag, Berlin-New York, 1983) pp. 235–257.

L. Lovász and Y. Yemini, “On generic rigidity in the plane,”*SIAM Journal on Algebraic and Discrete Methods* 3 (1982) 91–98.

C.L. Lucchesi and D.H. Younger, “A minimax relation for directed graphs,”*Journal of the London Mathematical Society Second Series* (1978) 369–374.

C. Mao-Cheng, “Arc-disjoint arborescences of digraphs,”*Journal of Graph Theory* 7 (1973) 235–240.

C.J.H. McDiarmid, “Independence structures and submodular functions,”*Bulletin of the London Mathematical Society* 29 (1973) 18–20.

C.J.H. McDiarmid, “Rado's theorem for polymatroids,”*Mathematical Proceedings of the Cambridge Philosophical Society* 78 (1975) 263–281.

C.J.H. McDiarmid, “Blocking, anti-blocking, and pairs of matroids and polymatroids,”*Journal of Combinatorial Theory B* 25 (1978) 313–325.

C.St.J.A. Nash-Williams, “An application of matroids to graph theory,” in: P. Rosenstiehl, ed.,*Theory of Graphs* (Proceedings International Symposium Roma, 1966) (Gordon and Breach, New York and Dunod, Paris, 1967) pp. 263–265.

C.St.J.A. Nash-Williams, “Well-balanced orientation of finite graphs and unobtrusive odd-vertex pairing,” in: W.T. Tutte, ed.,*Recent Progress in Combinatorics* (Academic Press, New York, 1969) pp. 133–149.

W.R. Pulleyblank, “Polyhedral combinatorics,” in: A. Bachem, M. Grötschel and B. Korte, eds.,*Mathematical Programming: The State of the Art* (Springer-Verlag, 1983) pp. 312–345.

R. Rado, “A theorem on independence functions,”*Quarterly Journal of Mathematics*, Oxford 13 (1942) 83–89.

R. Rado, “Note on independence functions,”*Proceedings of the London Mathematical Society, Third Series* 7 (1957) 300–320.

L.S. Shapley, “Cores of convex games,”*International Journal of Game Theory* 1 (1971) 11–26.

P. Schönsleben, “Ganzzahlige Polymatroid-Intersektions-Algorithmen,” Ph.D. Thesis, Eidgenössischen Technischen Hochschule, Zürich, 1980.

A. Schrijver, “On total dual integrality,”*Linear Algebra and its Applications* 38 (1981) 27–32.

A. Schrijver, “Packing and covering of crossing families of cuts,”*Journal of Combinatorial Theory B* 35 (1983) 104–128.

A. Schrijver, “Total dual integrality from directed graphs, crossing families and sub- and supermodular functions,” in: W.R. Pulleyblank, ed.,*Progress in Combinatorial Optimization* (Academic Press, Toronto, Ontario, 1984) pp. 315–362.

A. Schrijver, “Proving total dual integrality with cross-free families—a general framework,”*Mathematical Programming* 29 (1984) 15–27.

A. Schrijver, “Supermodular colourings,” in: A. Recski, L. Lovász, eds.,*Matroid Theory, Colloquia Mathematica Societatis János Bolyai* 40 (North-Holland, Amsterdam-New York, 1985) pp. 327–344.

A. Schrijver,*Theory of Linear and Integer Programming* (Wiley, New York, 1986).

É. Tardos, “Generalized matroids and supermodular colourings,” in: A. Recski and L. Lovász, eds.,*Matroid Theory, Colloquia Mathematica Societatis János Bolyai* 40 (North-Holland, Amsterdam-New York, 1985) pp. 359–382.

É. Tardos, C.A. Tovey and M.A. Trick, “Layered augmenting path algorithms,”*Mathematics of Operations Research* 11 (1986) 362–370.

D.M. Topkis, “Adjacency on polymatroids,”*Mathematical Programming* 30 (1984) 229–237.

W.T. Tutte, “On the problem of decomposing a graph into*n* connected factors,”*Journal of the London Mathematical Society* 36 (1961) 221–230.

K. Vidyasankar, “Covering the edge set of a directed graph with trees,”*Discrete Mathematics* 24 (1978) 79–85.

K. Vidyasankar and D. Younger, “A minimax equality related to the longest directed path in an acyclic graph,”*Canadian Journal of Mathematics* 27 (1975) 348–351.

V.A. Yemelichev, M.M. Kovalev and M.K. Kravtscv,*Polytopes, Graphs and Optimization* (Cambridge University Press, Cambridge, UK, 1984).

D.J.A. Welsh, “Kruskal's theorem for matroids,”*Proceedings of the Cambridge Philosophical Society* 64 (1968) 3–4.

D.J.A. Welsh,*Matroid Theory* (Academic Press, London, 1976).

U. Zimmermann, “Minimization on submodular flows,”*Discrete Applied Mathematics* 4 (1982) 303–323.