Mathematical Programming

, Volume 44, Issue 1, pp 203–212

A randomized algorithm for fixed-dimensional linear programming

  • M. E. Dyer
  • A. M. Frieze

DOI: 10.1007/BF01587088

Cite this article as:
Dyer, M.E. & Frieze, A.M. Mathematical Programming (1989) 44: 203. doi:10.1007/BF01587088


We give a (Las Vegas) randomized algorithm for linear programming in a fixed dimensiond for which the expected computation time is\(O(d^{(3 + \varepsilon _d )d} n)\), where limd→∞εd = 0. This improves the corresponding worst-case complexity,\(O(3^{d^2 } n)\). The method is based on a recent idea of Clarkson. Two variations on the algorithm are examined briefly.

Key words

Linear programmingrandomized algorithm

Copyright information

© The Mathematical Programming Society, Inc. 1989

Authors and Affiliations

  • M. E. Dyer
    • 1
  • A. M. Frieze
    • 2
    • 3
  1. 1.University of LeedsLeedsUK
  2. 2.Carnegie-Mellon UniversityPittsburghUSA
  3. 3.Queen Mary CollegeLondonUK