An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction Article DOI :
10.1007/BF01586449

Cite this article as: McIntyre, M.E. PAGEOPH (1980) 118: 152. doi:10.1007/BF01586449
41
Citations
468
Downloads
Abstract The generalized Lagrangian-mean description is motivated and illustrated by means of some simple examples of interactions between waves and mean flows, confining attention for the most part to waves of infinitesimal amplitude. The direct manner in which the theoretical description leads to the wave-action concept and related results, and also to the various ‘noninteraction’ theorems, more accuratelynon-acceleration theorems, is brought out as simply as possible. Variational formulations are not needed in the analysis, which uses elementary principles only.

The significance of the generalized Eliassen-Palm relations as conservation equations for wave activity is discussed briefly, as is the significance of the temporal nonuniformity of the generalized Lagrangian-mean description for dissipating disturbances.

Key words Wave mean-flow interaction Non-acceleration theorems Wave action This review article, is based on material prepared for a summer colloquium on ‘The General Circulation: Theory, Modeling, and Observations’ held at the National Center for Atmospheric Research in July 1978 and sponsored by the Advanced Study Program.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References
Andrews, D. G. (1980),

On the mean motion induced by transient inertio-gravity waves , Pure and Applied Geophys

118 , 177–188.

Google Scholar
Andrews, D. G. and

McIntyre, M. E. (1976a),

Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean, zonal acceleration . J. Atmos. Sci.

33 , 2031–2048.

Google Scholar
Andrews, D. G. and

McIntyre, M. E. (1976b),

Planetary waves in horizontal and vertical shear: asymptotic theory for equatorial waves in weak shear . J. Atmos. Sci.

33 , 2049–2053.

Google Scholar
Andrews, D. G. and

McIntyre, M. E. (1978a),

Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric flows in compressible, atmospheres , J. Atmos. Sci.

35 , 175–185.

Google Scholar
Andrews, D. G. and

McIntyre, M. E. (1978b),

An exact theory of non-linear waves on a Lagrangian-mean flow , J. Fluid. Mech.

89 , 609–646.

Google Scholar
Andrews, D. G. and

McIntyre, M. E. (1978c),

On wave-action and its relatives. , J. Fluid Mech.

89 , 647–664.

Google Scholar
Béland, M. (1978),

The evolution of a nonlinear Rossby wave critical level: effects of viscosity , J. Atmos. Sci.

35 , 1802–1815.

Google Scholar
Boyd, J. (1976)

The noninteraction of waves with the zonally-averaged flow on a spherical Earth and the interrelationships of eddy fluxes of energy, heat and momentum , J. Atmos. Sci.

33 , 2285–2291.

Google Scholar
Bretherton, F. P. (1969),

Momentum transport by gravity waves . Quart. J. Roy. Meter. Soc.

95 , 213–243.

Google Scholar
Bretherton, F. P. (1971),

The general linearized theory of wave propagation, §6, Lectures in Applied Mathematics , (American Math. Soc.),

13 61–102.

Google Scholar
Bretherton, F. P. (1979),Conservation of wave action and angular momentum in a spherical atmosphere , J. Fluid Mech. (to appear).

Bretherton, F. P. and

Garrett, C. J. R. (1968),

Wavetrains in inhomogeneous moving media , Proc. Roy. Soc. A

302 , 529–554.

Google Scholar
Bretherton, F. P. and

Haidvogel, D. B. (1976),

Two-dimensional turbulence above topography . J. Fluid Mech.

78 , 129–154.

Google Scholar
Brillouin, L. (1925).

On radiation stresses (in French), Annales de Physique.

4 , 528–586.

Google Scholar
Brillouin, L. (1936),

Radiation pressures and stresses (in French), Revue d'Acoustique,

5 , 99–111. See also

Brillouin, L. ,

Tensors in mechanics and elasticity , (Academic-New York 1964).

Google Scholar
Charney, J. G. and

Drazin, P. G. (1961),

Propagation of planetary-scale disturbances from the lower into the upper atmosphere , J. Geophys. Res.

66 , 83–109.

Google Scholar
Danielsen, E. F. (1968),

Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity , J. Atmos. Sci.,

25 , 502–518.

Google Scholar
Dewar, R. L. (1970),

Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium , Phys. Fluids

13 , 2710–2720.

Google Scholar
Dickinson, R. E. (1969),

Theory of planetary wave-zonal flow interaction , J. Atmos. Sci.

26 , 73–81.

Google Scholar
Dunkerton, T. (1978),

On the mean meridional mass motions of the stratosphere and mesosphere , J. Atmos. Sci.

35 , 2325–2333.

Google Scholar
Dunkerton, T. (1979a),

On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation , J. Atmos. Sci.

36 , 32–41.

Google Scholar
Dunkerton, T. (1979b),Lagrangian-mean theory of wave, mean-flow interaction with applications to non-acceleration and its breakdown , Revs. Geophys. and Space Phys. (submitted).

Eckart, C. (1963),

Some transformations of the hydrodynamic equations , Phys. Fluids

6 , 1037–1041.

Google Scholar
Edmon, H. J., Hoskings, B. J. andMcIntyre, M. E. (1980),Meridional cross-sections of the Eliassen-Palm flux and its divergence , J. Atmos., Sci. (to be submitted).

Eliassen, A. and

Palm, E. (1961),

On the transfer of energy in stationary mountain waves , Geofys. Publ.

22 , 3, 1-23.

Google Scholar
Fels, S. B. and

Lindzen, R. S. (1974),

The interaction of thermally excited gravity waves with mean flows , Geophys. Fluid Dyn.

6 149–191.

Google Scholar
Frieman, E. and

Rotenberg, M. (1960),

On hydromagnetic stability of stationary equilibria , Revs. Mod. Phys.

32 , 898–902.

Google Scholar
Grimshaw, R. H. J. (1975),

Nonlinear internal gravity waves in a rotating fluia , J. Fluid Mech.,

71 , 497–512.

Google Scholar
Hayes, W. D. (1970),

Conservation of action and modal wave, action , Proc. Roy. Soc. A

320 , 187–208.

Google Scholar
Hollweg, J. V. (1978),

Some physical processes in the solar wind , Revs. Geophys. and Space Phys.

16 , 689–720.

Google Scholar
Holton, J. R. (1974),

Forcing of mean flows by stationary waves , J. Atmos. Sci.

31 , 942–945.

Google Scholar
Holton, J. R. (1975),

The dynamic meteorology of the stratosphere and mesosphere , Boston, Massachusetts, American Meteorological Society, 218 pp.

Google Scholar
Holton, J. R. and

Dunkerton, T. (1978),

On the role of wave transience and dissipation in stratospheric mean flow vacillations , J. Atmos. Sci.

35 , 740–744.

Google Scholar
Holton, J. R. and

Lindzen, R. S. (1972),

An updated theory for the quasi-biennial cycle of the tropical stratosphere , J. Atmos. Sci.

29 , 1076–1080.

Google Scholar
Holton, J. R. and

Mass, C. (1976),

Stratospheric vacillation cycles , J. Atmos. Sci.

33 , 2218–2225.

Google Scholar
Krishnamurti, T. N. (1961),

The subtropical jet stream of winter , J. Meterol.

18 , 172–191.

Google Scholar
Lighthill, M. J. (1978),

Acoustic streaming , J. Sound Vib.

61 , 391–418.

Google Scholar
Mahlman, J. D. (1969),

Heat balance and mean meridional circulations in the polar stratosphere during the sudden warming of January 1958 , Mon. Wea. Rev.

97 , 534–540.

Google Scholar
Matsuno, T. (1971),

A dynamical model of the stratospheric sudden warming , J. Atmos. Sci.

28 , 1479–1494.

Google Scholar
Matsuno, T. (1980),

Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves , Pure and Applied Geophys.

118 , 189–216.

Google Scholar
McIntyre, M. E. (1973),

Mean motions and impulse of a guided internal gravity wave packet J. Fluid Mech.

60 , 801–811.

Google Scholar
McIntyre, M. E. (1977),

Wave transport in stratified, rotating fluids .

Springer Lecture Notes in Physics, 71 , 290–314 (ed. E. A. Spiegel and J. P. Zahn). (The statement on p. 303 line 27 is wrong; but see eq. (5.2) on p. 311.)

Google Scholar
McIntyre, M. E. (1979),Towards a Lagrangian-mean description of stratospheric circulations and chemical transports , Phil. Trans. Roy. Soc. London, A, to appear (Middle Atmosphere issue).

McIntyre, M. E. , and

Weissman, M. A. (1978),

On radiating instabilities and resonant over-reflection , J. Atmos. Sci.

35 , 1190–1196.

Google Scholar
Moffett, M. B., Westervelt, P. J. and

Beyer, R. T. (1971),

Large-amplitude pulse propagation-a transient effect. II , J. Acoust. Soc. Amer.

49 , 339–343.

Google Scholar
Peierls, R. (1976),

The momentum of light in a refracting medium , Proc. Roy. Soc. A

347 , 475–491.

Google Scholar
Plumb, R. A. (1975),

Momentum transport by the thermal tide in the stratosphere of Venus , Quart. J. Roy. Met. Soc.

101 , 763–776.

Google Scholar
Plumb, R. A. (1977),

The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation , J. Atmos. Sci.

34 , 1847–1858.

Google Scholar
Plumb, R. A. and

McEwan, A. D. (1978),

The instability of a forced standing wave in a viscous, stratified fluid: A laboratory analogue of the quasi-biennial oscillation J. Atmos. Sci.

35 , 1827–1839.

Google Scholar
Rhines, P. B. (1977),The dynamics of unsteady currents , inThe Sea: Ideas and Observations on Progress in the Study of the Seas , Vol. 6, 189–318, (ed. E. D. Goldberg).

Rhines, P. B. andHolland, W. R. (1979),A theoretical discussion of eddy-driven mean flows , Dyn. Atmos. Oceans (to appear).

Riehl, H. and

Fultz, D. (1957),

Jet stream and long waves in a steady rotating-dishpan experiment: structure of the circulation , Quart J. Roy. Meteorol Soc.

83 , 215–231.

Google Scholar
Soward, A. M. (1972),

A kinematic theory of large magnetic Reynolds number dynamos , Phil. Trans. Roy, Soc. A,

272 , 431–462.

Google Scholar
Stewartson, K. (1978),

The evolution of the critical layer of a Rossby wave , Geophys. Astrophys. Fluid Dyn.

9 , 185–200.

Google Scholar
Tung, K. K. (1979),A theory of stationary long waves. Part III: Quasi-normal modes in singular wave-guide , J. Atmos. Sci36 (to appear).

Uryu, M. (1980),

Acceleration of mean zonal flows by planetary waves , Pure and Applied Geophys.,

118 , 661–693.

Google Scholar
Warn, T. and

Warn, H. (1978),

The evolution of a nonlinear critical level , Studies in Appl. Math.

59 , 37–71.

Google Scholar Authors and Affiliations 1. National Center for Atmospheric Research Boulder USA 2. Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge England