Mathematical Programming

, Volume 62, Issue 1, pp 461–474

An approximation algorithm for the generalized assignment problem

  • David B. Shmoys
  • Éva Tardos

DOI: 10.1007/BF01585178

Cite this article as:
Shmoys, D.B. & Tardos, É. Mathematical Programming (1993) 62: 461. doi:10.1007/BF01585178


The generalized assignment problem can be viewed as the following problem of scheduling parallel machines with costs. Each job is to be processed by exactly one machine; processing jobj on machinei requires timepij and incurs a cost ofcij; each machinei is available forTi time units, and the objective is to minimize the total cost incurred. Our main result is as follows. There is a polynomial-time algorithm that, given a valueC, either proves that no feasible schedule of costC exists, or else finds a schedule of cost at mostC where each machinei is used for at most 2Ti time units.

We also extend this result to a variant of the problem where, instead of a fixed processing timepij, there is a range of possible processing times for each machine—job pair, and the cost linearly increases as the processing time decreases. We show that these results imply a polynomial-time 2-approximation algorithm to minimize a weighted sum of the cost and the makespan, i.e., the maximum job completion time. We also consider the objective of minimizing the mean job completion time. We show that there is a polynomial-time algorithm that, given valuesM andT, either proves that no schedule of mean job completion timeM and makespanT exists, or else finds a schedule of mean job completion time at mostM and makespan at most 2T.

Key words

Approximation algorithmsgeneralized assignment problemscheduling unrelated parallel machines

Copyright information

© The Mathematical Programming Society, Inc. 1993

Authors and Affiliations

  • David B. Shmoys
    • 1
  • Éva Tardos
    • 1
  1. 1.School of Operations Research and EngineeringCornell UniversityIthacaUSA