[1]

A. Auslender, “Penalty methods for computing points that satisfy second order necessary conditions”,*Mathematical Programming* 17 (1979) 229–238.

[2]

A. Ben-Tal and J. Zowe, “A unified theory of first and second order conditions for extremum problems in topological vector spaces”,*Mathematical Programming Study* 19 (1982) 39–76.

[3]

A. Ben-Tal and J. Zowe, “Discrete*l*
_{1}-approximation and related nonlinear nondifferentiable problems”, Preprint, Institute of Mathematics, University of Bayreuth, Bayreuth (1980).

[4]

C. Charalambous, “On the condition for optimality of the non-linear*l*
_{1}-problem”,*Mathematical Programming* 19 (1980) 178–185.

[5]

T.F. Coleman and A.R. Conn, “Second order conditions for an exact penalty function”,*Mathematical Programming* 19 (1980) 178–185.

[6]

J.M. Danskin,*The theory of max-min* (Springer, Berlin, 1967).

[7]

V.F. Dem'yanov and V.N. Malozemov,*Introduction to minimax* (Wiley, New York, 1974).

[8]

V.F. Dem'yanov and A.B. Pevnyi, “Expansion with respect to a parameter of the extremal values of game problems”,*USSR Computational Mathematics and Mathematical Physics* 14 (1974) 33–45.

[9]

R.J. Duffin, “Infinite programs”, in: H.W. Kuhn and A.W. Tucker, eds.,*Linear inequalities and related systems* (Princeton University Press, Princeton, NH, 1956) pp. 157–171.

[10]

R. Fletcher and G.A. Watson, “First and second order conditions for a class of nondifferentiable optimization problems”,*Mathematical Programming* 18 (1980) 291–307.

[11]

S.P. Han and O.L. Mangasarian, “Exact penalty functions in nonlinear programming”,*Mathematical Programming* 17 (1979) 251–269.

[12]

W. Krabs,*Optimization and approximation* (Wiley, New York, 1979).

[13]

H. Maurer and J. Zowe, “First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems”,*Mathematical Programming* 16 (1979) 98–110.

[14]

T. Pietrzykowski, “An exact penalty method for constrained maxima”,*SIAM Journal on Numerical Analysis* 6 (1969) 299–304.