[1]

M. Avriel,*Nonlinear Programming: Analysis and Methods* (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[2]

E. Balas, “Solution of large-scale transportation problems through aggregation,”*Operations Research* 13 (1965) 82–93.

[3]

M.S. Bazaraa and C.M. Shetty,*Nonlinear Programming: Theory and Algorithms* (Wiley, New York, 1979).

[4]

R. Boyer and B. Martinet, “Multigrid methods in convex optimization,” in: U. Trotenberg and W. Hackbusch, eds.,*Multigrid Methods: Special Topics and Applications. GMD Studien, Vol. 110* (Gesellschaft für Mathematik und Datenverarbeitung, Bonn, 1986) pp. 27–37.

[5]

A. Brandt, “Multi-level adaptive solutions to boundary value problems,”*Mathematics of Computation* 31 (1977) 333–390.

[6]

A. Brandt, “Multi-level computations: Review and recent developments,” in: S. McCormick, with J. Dendy, J. Mandel, S. Parter and J. Ruge, eds.,*Multigrid Methods, Proceedings of the Third Copper Mountain Conference* (Dekker, New York, 1988) pp. 35–62.

[7]

A. Brandt and C.W. Cryer, “Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems,”*SIAM Journal on Scientific and Statistical Computing* 4 (1983) 655–684.

[8]

W. Briggs,*Multigrid Tutorial* (SIAM, Philadelphia, PA, 1987).

[9]

F. Chatelin and W.L. Miranker, “Aggregation of successive approximation methods,”*Linear Algebra and Applications* 43 (1982) 17–47.

[10]

R.W. Cottle and J.S. Pang, “On the convergence of a block successive over-relaxation method for a class of linear complementarity problems,”*Mathematical Programming Study* 17 (1982) 126–138.

[11]

R. Glowinski, J.L. Lions and R. Trémolières,*Numerical Analysis of Variational Inequalities* (North-Holland, Amsterdam, 1981).

[12]

W. Hackbusch, “Convergence of multi-grid iterations applied to difference equations,”*Mathematics of Computation* 34 (1980) 425–440.

[13]

W. Hackbusch,*Multigrid Methods and Applications* (Springer, Berlin, 1985).

[14]

W. Hackbusch and H.D. Mittelmann, “On multigrid methods for variational inequalities,”*Numerische Mathematik* 42 (1983) 65–76.

[15]

W. Hackbusch and U. Trottenberg, “Multigrid methods,”*Proceedings, Lecture Notes in Mathematics, Vol. 960* (Springer, Berlin, 1982).

[16]

W. Hackbusch and W. Trottenberg, “Multigrid methods II,”*Proceedings, Lecture Notes in Mathematics, Vol. 1228* (Springer, Berlin, 1985).

[17]

G. Liesegang, “Aggregation bei linearen optimierungs-modellen,” Habilitationsschrift, Universität zu Köln (Cologne, 1980.

[18]

J. Mandel, “Multilevel iterative methods for some variational inequalities and optimization problems,” Technical Report 32, Computing Center, Charles University (Prague, Czechoslovakia, 1983).

[19]

J. Mandel, “Algebraic study of a multigrid method for some free boundary problems,”*Comptes Rendus Academic of Science Paris, Series I* 298 (1984) 469–472.

[20]

J. Mandel, “A multilevel iterative method for symmetric, positive definite linear complementarity problems,”*Applied Mathematics and Optimization* 11 (1984) 77–95.

[21]

J. Mandel and B. Sekerka, “A local convergence proof for the iterative aggregation method,”*Linear Algebra and Applications* 51 (1983) 163–172.

[22]

O.L. Mangasarian, “Solution of symmetric linear complementarity problems by iterative methods,”*Journal of Optimization Theory and Applications* 22 (1977) 465–485.

[23]

O.L. Mangasarian, “Iterative solution of linear programs,”*SIAM Journal on Numerical Analysis* 18 (1981) 606–614.

[24]

O.L. Mangasarian and R.R. Meyer, “Nonlinear perturbations of linear programs,”*SIAM Journal for Control and Optimization* 17 (1979) 745–752.

[25]

S.F. McCormick,*Multigrid Methods* (SIAM, Philadelphia, PA, 1987).

[26]

W.L. Miranker and V. Ya. Pan, “Methods of aggregation,”*Linear Algebra and Applications* 29 (1980) 231–257.

[27]

R.T. Rockafellar,*Convex Analysis* (Princeton University Press, Princeton, NJ, 1970).

[28]

I.Y. Vakhutinsky, L.M. Dudkin and A.A. Ryvkin, “Iterative aggregation—A new approach to the solution of large-scale problems,”*Econometrica* 47 (1979) 821–841.

[29]

W.I. Zangwill,*Nonlinear Programming—A Unified Approach* (Prentice-Hall, Englewood Cliffs, NJ, 1969).

[30]

P. Zipkin, “Bounds for row-aggregation in linear programming,”*Operations Research* 28 (1980) 903–916.

[31]

P. Zipkin, “Bounds on the effect of aggregating variables in linear programs,”*Operations Research* 28 (1980) 403–418.