[1]

J. Bracken, G.P. McCormick, Selected applications of nonlinear programming, Wiley, New York, 1968.

[2]

J.W. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control Optim. 29 (1991) 968–998.

[3]

R.H. Byrd, J. Nocedal, An analysis of reduced Hessian methods for constrained optimization, Math. Programming 49 (1991) 285–323.

[4]

R.H. Byrd, J. Nocedal, R.B. Schnabel, Representations of quasi-Newton-matrices and their use in limited memory methods, Math. Programming 63 (1994) 129–156.

[5]

Th.F. Coleman, A.R. Conn, Nonlinear programming via an exact penalty function: Global analysis, Math. Programming 24 (1982) 137–161.

[6]

Th.F. Coleman, A.R. Conn, Nonlinear programming via an exact penalty function: Asymptotic analysis, Math. Programming 24 (1982) 123–136.

[7]

Th.F. Coleman, A.R. Conn, On the local convergence of a quasi-Newton-method for the nonlinear programming problem, SIAM J. Numer. Anal. 21 (1984) 755–769.

[8]

Th.F. Coleman, P.A. Fenyes, Partitioned quasi-Newton methods for nonlinear equality constrained optimization, Math. Programming 53 (1992) 17–44.

[9]

A.R. Conn, T. Pietrzykowski, A penalty function method converging directly to a constrained optimum, SIAM J. Numer. Anal. 14 (1977) 348–374.

[10]

K. Crusius, Ein global konvergentes Verfahren der projizierten Richtungen mit nicht notwendig zulàssigen Iterationspunkten, Ph.D. Thesis, Mainz University, Mainz, Germany, 1983.

[11]

R.S. Dembo, A set of geometric programming test problems and their solutions, Math. Programming 10 (1976) 192–213.

[12]

J.C. Dodu, P. Huard, Utilisation de mises à jour doubles dans les méthodes de quasi-Newton, Comptes Rendus de l' Academie de Sciences Paris Série I, 313 (1991) 329–334.

[13]

I.S. Duff, A.M. Erisman, J.K. Reid, Direct method for sparse matrices, Oxford Univ. Press, Oxford, 1986.

[14]

R. Fletcher, Practical methods of optimization, 2nd ed., Wiley, Chicester, 1987.

[15]

D. Gabay, Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization, Math. Programming Stud. 16 (1982) 18–44.

[16]

Ph.E. Gill, W. Murray, Numerically stable methods for quadratic programming, Math. Programming 14 (1978) 349–372.

[17]

Ph.E. Gill, W. Murray, M. Saunders, M.H. Wright, Some theoretical properties of an augmented Lagrangian merit function, in: P.M. Pardalos (Ed.), Advances in Optimization and Parallel Computing, North Holland, Amsterdam, 1992, pp. 101–128.

[18]

Ph.E. Gill, W. Murray, M. Saunders, M.H. Wright, Sparse matrix methods in optimization, SIAM J. Sci. Comp. 5 (1984) 562–589.

[19]

Ph.E. Gill, S.J. Hammarling, W. Murray, M. Saunders, M.H. Wright, Users Guide for NOPSOL (ver. 4.0), Department O R, Stanford University, Report SOL 86-2, 1986.

[20]

Ch. Gurwitz, Local convergence of a two-piece update of a projected Hessian matrix, SIAM J. Optim. 4 (1994) 461–485.

[21]

Ch. Gurwitz, M. Overton, Sequential quadratic programming methods based on approximating a projected Hessian matrix, SIAM J. Sci. Comp. 10 (1989) 631–653.

[22]

D.M. Himmelblau, Applied nonlinear programming, McGraw-Hill, New York, 1972.

[23]

J. Heinz, P. Spellucci, A successful implementation of the Pantoja-Mayne SQP method, Optim. Meth. Software 4 (1994) 1–28.

[24]

W. Hock, K. Schittkowski, Test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems 187, Springer, Berlin, 1981.

[25]

D.Q. Mayne, E. Polak, A superlinearly convergent algorithm for constrained optimization problems, Math. Programming Stud. 16 (1982) 45–61.

[26]

J.F.A. Pantoja, D.Q. Mayne, Exact penalty function algorithm with simple updating of the penalty parameter, J. Optim. Theory Appl. 69 (1991) 441–467.

[27]

W. Murray, J.P. Prieto, A sequential quadratic programming algorithm using an incomplete solution of the subproblem, SIAM J. Optim. 5 (1995) 590–640.

[28]

J. Nocedal, M. Overton, Projected Hessian updating algorithms for nonlinearly constrained optimization, SIAM J. Numer. Anal. 22 (1985) 821–850.

[29]

H.K. Overley, Structured Secant Updates for Nonlinear Constrained Optimization, Ph.D. Thesis, Rice University, Rice, Texas, 1991.

[30]

K. Schittkowski, The nonlinear programming method of Wilson, Han and Powell with an augmented Lagrangian type line search function I, II, Numer. Math. 38 (1981) 83–128.

[31]

K. Schittkowski, More test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems 282, Springer, Berlin, 1987.

[32]

P. Spellucci, Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser, Basel, 1993.

[33]

P. Spellucci, donlp2: do nonlinear programming, code obtainable via anonymous ftp from netlib as netlib/opt/donlp2.

[34]

P. Spellucci, Han's method without solving QP, in: A. Auslender, W. Oettli, J. Stoer (Eds.), Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, vol. 30, Springer, Berlin, 1981, pp. 123–141.

[35]

P. Spellucci, Sequential quadratic programming: Theory, implementation, problems, in: M.J. Beckmann, K.W. Gaede, K. Ritter, H. Schneeweiss (Eds.), Methods of Operations Research, vol. 53, Anton Hain, Meisenheim, 1985, pp. 183–213.

[36]

P. Spellucci, A new technique for inconsistent QP-problems in the SQP-method, Technical University at Darmstadt, Department of Mathematics, preprint 1561, Darmstadt (1993), to appear in Mathematical Methods of Operations Research, vol. 48 (1998).

[37]

G.W. Stewart, The effects of rounding error on an algorithm for downdating a Cholesky factorization, J.I.M.A. 23 (1979) 203–213.

[38]

Y. Xie, Reduced Hessian algorithm for solving large scale equality constrained optimization problems, Ph.D. Thesis, University of Colorado at Boulder, Boulder, Colorado, 1991.