, Volume 37, Issue 2, pp 105-111

Induction of bacillus-Calmette-Guérin-activated killer cells from human peripheral blood mononuclear cells against human bladder carcinoma cell lines in vitro

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Cytotoxicity against two human bladder carcinoma cell lines (BT-A and BT-B) was investigated using human peripheral blood mononuclear cells (PBMC) stimulated with viable bacillus Calmette-Guérin (BCG) or sonicated BCG (s-BCG). We applied a cytotoxicity assay based on radioactive labelling of tumour cells by incorporation ofl[3H]methionine. The results were compared with the cytotoxicity exerted by lymphokine-activated killer (LAK) cells generated by interleukin-2 (IL-2) and interferon γ (IFNγ). BCG-stimulated PBMC showed a cytotoxic potential against BT-A and BT-B comparable to that of IFNγ-generated LAK cells, but this did not reach the level of IL-2-generated LAK cells. We termed these cytotoxic effectors BCG-activated killer (BAK) cells. In contrast to their cytotoxicity against bladder tumour cells. BAK cells did not differ from unstimulated PBMC in the killing of K562 cells. Only viable but not sonicated BCG was able to induce cytotoxicity against BT-A and BT-B. We could demonstrate the presence of the cytokines IFNγ, IL-2, tumour necrosis factor α (TNFα) and TNFß in the supernatants harvested during the generation of BAK cells. Monoclonal antibodies neutralizing IFNγ were able to inhibit BCG-mediated cytotoxicity, giving evidence of the involvement of IFNγ in the induction of BAK cells. Furthermore, we performed experiments to investigate the cytotoxic potential of distinct cell populations. The cells effective in BCG-activated killing of bladder tumour cells could be localized within the CD8+/CD56+ lymphocyte subset. CD4+ cells and macrophages did not exhibit cytolytic activity. Our findings imply that the activation by BCG of CD8+/CD56+ killer cells might be an important antitumoral mechanism during BCG therapy against superficial urothelial bladder cancer.