Find out how to access previewonly content
Finite strain theories and comparisons with seismological data
 F. D. Stacey,
 B. J. Brennan,
 R. D. Irvine
 … show all 3 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
All the finite strain equations that we are aware of that are worth considering in connection with the interior of the Earth are given, with the assumptions on which they are based and corresponding relationships for incompressibility and its pressure derivatives in terms of density. In several cases, equations which have been presented as new or independent are shown to be particular examples of more general equations that are already familiar. Relationships for deriving finite strain equations from atomic potential functions or vice versa are given and, in particular it is pointed out that the BirchMurnaghan formulation implies a sum of power law potentials with even powers. All the equations that survive simple plausibility tests are fitted to the lower mantle and outer core data for the PEM earth model. For this purpose the model data are extrapolated to zero temperature, using the MieGrüneisen equation to subtract the thermal pressure (at fixed density) and the pressure derivative of this equation to substract the thermal component of incompressibility. Fitting of finite strain equations to such zero temperature data is less ambiguous than fitting raw earth model data and leads immediately to estimates of the low temperature zero pressure parameters of earth materials. On this basis, using the best fitting equations and constraining core temperature to give an extrapolated incompressibilityK _{0}=1.6×10^{11}Pa, compatible with a plausible iron alloy, the following numerical data are obtained: Coremantle boundary temperature 3770 K Zero pressure, zero temperature densities: lower mantle 4190 kg m^{−3} outer core (solidified) 7500 kg m^{−3} Zero pressure, zero temperature incompressibility of the lower mantle 2.36×10^{11}Pa
However, an inconsistency is apparent betweenP(ϱ) andK(ϱ) data, indicating that, even in the PEM model, in which the lower mantle is represented by a single set of parameters, it is not perfectly homogeneous with respect to composition and phase.
References
Abramowitz, M., and Stegun, I. A.: 1965,Handbook of Mathematical Functions, Dover, New York, 1046 pp.
Anderson, D. L.: 1967, ‘A Seismic Equation of State’,Geophys. J., R. Astron. Soc.,13, 9–30.
Anderson, O. L.: 1968, ‘On the Use of Ultrasonic and Shock Wave Data to Estimate Compressions at Extremely High Pressures’,Phys. Earth Planet. Int.
1, 169–176.
Anderson, O. L.: 1970, ‘Elastic Constants of the Central Force Model for Three Cubic Structures: Pressure Derivatives and Equations of State.J. Geophys. Res.
75, 2719–2740.
Anderson, O. L.: 1978, ‘An Experimentalists Equation of State: Avoiding the Grüneisen Parameter Quandry’,EOS
59, 373.
Anderson, O. L.: 1979a, ‘Evidence Supporting the Law γϱ=Constant for the Grüneisen Parameter of the Earth's Lower Mantle’,J. Geophys. Res.
84, 3537–3542.
Anderson, O.L.: 1979b, ‘The Hildebrand Equation of State Applied to Minerals Relevant to Geophysics’,Phys. Chem. Minerals
5, 33–51.
Anderson, O. L., and Nafe, J. E.: 1965, ‘The Bulk ModulusVolume Relationship for Oxide Compounds and Related Geophysical Problems’,J. Geophys. Res.
70, 3951–3963.
Bardeen, J.: 1938, ‘Compressibilities of the Alkali Metals’,J. Chem. Phys.
6, 372–378.
Birch, F.: 1952, ‘Elasticity and Constitution of the Earth's Interior’,J. Geophys. Res.
57, 227–286.
Birch, F.: 1961, ‘The Velocity of Compressional Waves in Rocks to 10 Kilobars’, 2,J. Geophys. Res.
66, 2199–2224.
Brennan, B. J., and Stacey, F. D.: 1979, ‘A Thermodynamically Based Equation of State for the Lower Mantle’,J. Geophys. Res.
84, 5535–5539.
Bukowinski, M. S. T.: 1976, ‘On the Electronic Structure of Iron at Core Pressures’,Phys. Earth Planet. Int.
13, 57–66.
Bullard, E. C., and Gellman, H.: 1954, ‘Homogeneous Dynamos and Terrestrial Magnetism’,Phil. Trans. Roy. Soc. A
247, 213–278.
Butler, R., and Anderson, D. L.: 1978, ‘Equation of State Fits to the Lower Mantle and Outer Core’,Phys. Earth Planet. Int.
17, 147–162.
Davies, G. F., and Dziewonski, A. M.: 1975, ‘Homogeneity and Constitution of the Earth's Lower Mantle and Outer Core’,Phys. Earth Planet. Int.
10, 336–343.
Davis, L. A., and Gordon, R. B.: 1967, ‘Compression of Mercury at High Pressure’,J. Chem. Phys.
46, 2650–2660.
Dziewonski, A. M., Hales, A. L., and Lapwood, E. R.: 1975, ‘Parametrically Simple Earth Models Cosistent with Geophysical Data’,Phys. Earth Planet. Int.
10, 12–48.
Grover, R., Getting, I. C., and Kennedy, G. C.: 1973, ‘Simple Compressibility Relation for Solids’,Phys. Rev. B,7, 567–571.
Gschneider, K. A.: 1964, ‘Physical Properties and InterRelationships of Metallic and SemiMetallic Elements’,Solid State Physics
16, 275–426.
Hayward, A. T. J.: 1967, ‘Compressibility Equations for Liquids: A Comparative Study’,Brit. J. Appl. Phys.
18, 965–977.
Irvine, R. D., and Stacey, F. D.: 1975, ‘Pressure Dependence of the Thermal Grüneisen Parameter, with Application to the Earth's Lower Mantle and Outer Core’,Phys. Earth Planet. Int.
11, 157–165.
Jordan, T. H., and Anderson, D. L.: 1973, ‘Earth Structure from Free Oscillations and Travel Times’,Geophys. J., R. Astron. Soc.
35, 362–365.
Keane, A.: 1954, ‘An Investigation of Finite Strain in an Isotropic Material Subjected to Hydrostatic Pressure and Its Seismological Applications’,Australian J. Phys.,7, 323–333.
Kelvin, Lord: 1902, ‘A New Specifying Method for Stress and Strain in an Elastic Solid’,Phil. Mag. (Series 6),3 95–97 and 444–448.
Love, A. E. H.: 1927,A Treatise on the Mathematical Theory of Elasticity, fourth ed., Cambridge University Press, Cambridge, 643 pp.
MacDonald, J. R.: 1966, ‘Some Simple Isothermal Equations of State’,Revs. Mod. Phys.
38, 669–679.
MacDonald, J. R.: 1969, ‘Review of Some Experimental and Analytical Equations of State’.Revs. Mod. Phys.
41, 316–349.
Mao, N.H.: 1970, ‘Empirical Equation of State for High Compression’,J Geophys. Res.
75, 7508–7512.
Morse, P. M.: 1929, ‘Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels’,Phys. Rev.
34, 57–64.
Murnaghan, F. D.: 1951,Finite Deformation of an Elastic Solid, Wiley, New York, 140 pp.
Pack, D. C., Evans, W. M., and James, H. J.: 1948, ‘The Propagation of Shock Waves in Steel and Lead’,Proc. Phys. Soc.
60, 1–8.
Pekeris, C. L., and Accad, Y.: 1972, ‘Dynamics of the Liquid Core of the Earth’,Phil. Trans. Roy. Soc. A,273, 237–260.
Ringwood, A. E.: 1970, ‘Phase Transformations and the Constitution of the Mantle’,Phys. Earth Planet. Int.
3, 109–155.
Rydberg, R.: 1932, ‘Graphische Darstellung Einiger Bandspektroskopischer Ergebnisse’,Z. Phys.
73, 376–385.
Sammis, C. G., Anderson, D. L., and Jordan, T.: 1970, ‘A Note on the Application of Isotropic Finite Strain Theory to Ultrasonic and Seismological Data’,J. Geophys. Res.
75, 4478–4480.
Shankland, T. J., and Chung, D. H.: 1974, ‘General Relationships Among Sound Speeds. II. Theory and Discussion’,Phys. Earth Planet. Int.
8, 121–129.
Simmons, G.: 1964, ‘Velocity of Compressional Waves in Various Minerals at Pressures to 10 Kilobars’,J. Geophys. Res.
69, 1117–1121.
Slater, J. C.: 1939,Introduction to Chemical Physics, McGrawHill, New York, 521 pp.
Stacey, F. D.: 1977a,Physics of the Earth, second ed., Wiley, New York, 414 pp.
Stacey, F. D.: 1977b, ‘A Thermal Model of the Earth’,Phys. Earth Planet. Int.
15, 341–348.
Stacey, F. D.: 1977c, ‘Applications of Thermodynamics to Fundamental Earth Physics’,Geophys. Surveys
3, 175–204.
Stacey, F. D.:, and Irvine, R. D.: 1977a, ‘Theory of Melting: Thermodynamic Basis of Lindemann's Law’Australian J. Phys.
30, 631–640.
Stacey, F. D., and Irvine, R. D.: 1977b, ‘A Simple Dislocation Theory of Melting’,Australian J. Phys.
30, 641–646.
Stevenson, D. J.: 1979, ‘Applications of Liquid State Physics to the Earth's Core’,Phys. Earth Planet. Int.
22, 42–52.
Thomsen, L.: 1971, ‘Equations of State and the Interior of the Earth’. In J. Coulomb and M. Caputo (eds.),Mantle and Core in Planetary Physics (Proc. International School of Physics ‘Enrico Fermi’), New York: Academic Press, pp. 94–133.
Ullmann, W. and Pan'kov, V. L.: 1980, ‘Application of the Equation of State to the Earth's Lower Mantle’,Phys. Earth Plant. Inter.
22, 194–203.
Vashchenko, V. Ya., and Zubarev, V. N.: 1963, ‘Concerning the Grüneisen Constant’,Sov. Physics Solid State
5, 653–655.
Walzer, U., Ullmann, W., and Pan'kov, V. L.: 1979, ‘Comparison of Some Equation of State Theories by Using Experimental High Compression Data’,Phys. Earth Planet. Int.
18, 1–12.
Zharkov, V. N., and Kalinin, V. A.: 1971,Equations of State for Solids at High Pressures and Temperatures (Translated from Russian). Consultants Bureau, New York, 257 pp.
 Title
 Finite strain theories and comparisons with seismological data
 Journal

Geophysical surveys
Volume 4, Issue 3 , pp 189232
 Cover Date
 19810401
 DOI
 10.1007/BF01449185
 Print ISSN
 00465763
 Online ISSN
 15730956
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Industry Sectors
 Authors

 F. D. Stacey ^{(1)}
 B. J. Brennan ^{(1)}
 R. D. Irvine ^{(1)}
 Author Affiliations

 1. Physics Department, University of Queensland, 4067, Brisbane, Australia