1.

M. Bardi, An asymptotic formula for the Green's function of an elliptic operator, Ann. Scuola Norm. Sup. Pisa, to appear.

2.

M. Bardi, Work in preparation.

3.

G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, Math. Modeling Numer. Anal. 21 (1987), 557–579.

4.

M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton—Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487–502.

5.

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton—Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1–42.

6.

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton—Jacobi equations, Math. Comp. 43 (1984), 1–19.

7.

P. Dupuis and H. Kushner, Minimizing escape probabilities; a large deviations approach (preprint).

8.

L. C. Evans, Classical solutions of the Hamilton—Jacobi—Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), 245–255.

9.

L. C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincare Anal. Non Linéaire 2 (1985), 1–20.

10.

L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton—Jacobi—Isaacs equations, Indiana Univ. Math. J. 33 (1984), 773–797.

11.

W. H. Fleming, Exit probabilities and stochastic optimal control, Appl. Math. Optim. 4 (1978), 329–346.

12.

W. H. Fleming and P. E. Souganidis, A PDE approach to asymptotic estimates for optimal exit probabilities, Ann. Scuola Norm. Sup. Pisa 13 (1986), 171–192.

13.

W. H. Fleming and C.-P. Tsai, Optimal exit probabilities and differential games, Appl., Math. Optim. 7 (1981), 253–282.

14.

M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984.

15.

H. Ishii, A Simple, direct proof of uniqueness for solutions of the Hamilton—Jacobi equations of eikonal type, Proc. Amer. Math. Soc. 100 (1987), 247–251.

16.

H. Ishii, A boundary value problem of the Dirichlet type for Hamilton—Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 105–135.

17.

S. Kamin, Exponential descent of solutions of elliptic singular perturbation problems, Comm. Partial Differential Equations 9 (1984), 197–213.

18.

S. Koike, An asymptotic formula for solutions of Hamilton—Jacobi—Bellman equations, Nonlinear Anal. TMA 11 (1987), 429–436.

19.

P.-L. Lions, Generalized Solutions of Hamilton—Jacobi Equations. Pitman, Boston, 1982.

20.

P.-L. Lions, Optimal control of diffusion processes and Hamilton—Jacobi—Bellman equations; Part II, viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), 1229–1276.

21.

N. S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), 751–769.

22.

I. I. Tsitovich, On the time of first exit from a domain, Theory Probab. Appl. 23 (1978), 117–129.

23.

S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math. 20 (1967), 431–455.

24.

A. D. Vent-tsel’ and M. I. Freidlin, Some problems concerning stability under small random perturbations, Theory Probab. Appl. 17 (1972), 269–283.