Numerische Mathematik

, Volume 37, Issue 3, pp 333–337

On finite element approximation of the gradient for solution of Poisson equation

  • P. Neittaanmäki
  • J. Saranen
Article

DOI: 10.1007/BF01400312

Cite this article as:
Neittaanmäki, P. & Saranen, J. Numer. Math. (1981) 37: 333. doi:10.1007/BF01400312

Summary

A nonconforming mixed finite element method is presented for approximation of ∇w with Δw=f,w|r=0. Convergence of the order\(\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )\) is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.

Subject Classifications

AMS (MOS): 65N30 CR: 5.17 

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. Neittaanmäki
    • 1
  • J. Saranen
    • 1
  1. 1.Department of MathematicsUniversity of JyväskyläJyväskyläFinland