Numerische Mathematik

, Volume 53, Issue 6, pp 663–686

Convergence of the multilevel Full Approximation Scheme including theV-cycle

  • Arnold Reusken

DOI: 10.1007/BF01397135

Cite this article as:
Reusken, A. Numer. Math. (1988) 53: 663. doi:10.1007/BF01397135


The multilevel Full Approximation Scheme (FAS ML) is a well-known solver for nonlinear boundary value problems. In this paper we prove local quantitative convergence statements for a class of FAS ML algorithms in a general Hilbertspace setting. This setting clearly exhibits the structure of FAS ML. We prove local convergence of a nested iteration for a rather concrete class of FAS ML algorithms in whichV-cycles and only one Jacobilike pre- and post-smoothing on each level are used.

Subject Classifications

AMS(MOS): 65N20CR: G1.8

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Arnold Reusken
    • 1
  1. 1.Department of MathematicsUniversity of UtrechtUtrechtThe Netherlands