1.

Aleksandrov, A.D.: The Dirichlet problem for the equation det(*z*
_{ij})=φ(*z*
_{1},...,*z*
_{n},*z, x*
_{1},...,*x*
_{n}). I. Vestnik Leningrad Univ.**1** 5–24 (1958) (in Russian)

2.

Aleksandrov, A.D.: Convex polyhedra. GITTL, M.-L. 1950 (in Russian); German transl. Berlin, Akademie-Verlag 1958

3.

Arnason, G.: A convergent method for solving the balance equation. J. Meteorol.**15**, 220–225 (1957)

4.

Bakelman, I.: Geometric methods for solving elliptic equations. Nauka 1965 (in Russian)

5.

Busemann, H.: Convex surfaces. New York, Interscience Publishers, 1958

6.

Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations. I. Monge-Ampère equation. Comm. Pure Appl. Math.**37**, 369–402 (1984)

7.

Cheng, S.Y., Yau, S.T.: On the regularity of the Monge-Ampère equation det(∂^{2}
*u/∂ x*
_{i}∂*y*
_{j})=*F(x,u)*. Comm. Pure Appl. Math.**30** 41–68 (1977)

8.

Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II, New York: Interscience Publishers, Wiley 1962

9.

Haltiner, G.J.: Numerical weather prediction, New York, Wiley 1971

10.

Kasahara, A.: Significance of non-elliptic regions in balanced flows of the tropical atmosphere (preprint). Boulder, Colorado, National Center for Atmospheric Research, 1981

11.

Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math.**6**, 337–394 (1953)

12.

Oliker, V.: On the linearized Monge-Ampère equations related to the boundary value Minkowski problem and its generalizations. In: Gherardelli, F. (ed.) Monge-Ampère Equations and Related Topics, Proceedings of a Seminar held in Firenze, 1980, pp. 79–112 Roma 1982

13.

Ortega, J.M., Rheinboldt, W.C.: Iterative solutions of nonlinear equations in several variables. New York: Academic Press 1970

14.

Pogorelov, A.V.: Deformation of convex surfaces. GITTL. M.-L. 1951 (in Russian) (see esp. Ch. II, Sect. 4)

15.

Pogorelov, A.V.: The Minkowski multidimensional problem. Moscow, Nauka 1975 (in Russian); Engl. transl. New York: Wiley J. 1978

16.

Rheinboldt, W.: On M-functions and their application to nonlinear Gauss-Seidel iterations and to network flows. J. Math. Anal. Appl.**32**, 274–307 (1970)

17.

Rheinboldt, W.: Methods for solving systems of nonlinear equations. Regional Conference Series in Applied Math. # 14. SIAM. Philadelphia 1974

18.

Shuman, F.G.: Numerical methods in weather prediction: I. The Balance equation. Monthly Weather Review**85**, 329–332 (1957)

19.

Stoker, J.J.: Nonlinear elasticity. Ch. 5.. New York: Gordon and Breach 1968

20.

Swart, G.: Finding the convex hull facet by facet. Algorithms**6**, 17–48 (1985)

21.

Volkov, Y.A.: An estimate for the change of solution of the equation*f(z*
_{1}, ...,*z*
_{n}) det*(z*
_{ij})*=h(x*
_{1}, ...,*x*
_{n}) in terms of the change of its right hand side. Vestnik Leningrad Univ.**13** 5–14 (1960) (in Russian)

22.

Westcott, B.S.: Shaped reflector antenna design. Research Studies Press Ltd., Letchworth, Hertforedshire, England 1983