Monatshefte für Mathematik

, Volume 81, Issue 4, pp 267–278

Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und den Satz von Petersen

  • Herbert Fleischner

DOI: 10.1007/BF01387754

Cite this article as:
Fleischner, H. Monatshefte für Mathematik (1976) 81: 267. doi:10.1007/BF01387754

A common basis for the theory of Eulerian graphs and the theorem of Petersen


The main result states: Lete1,e2,e3 be three lines incident to the pointv (degv≥4) of the connected bridgeless graphG such thate1 ande3 belong to different blocks ifv is a cutpoint. “Split the pointv” in two ways: Lete1,ej,j=2, 3, be incident to a new pointv1j and leave the remainder ofG unchanged, thus obtainingG1j. Then at least one of the two graphsG12,G13 is connected and bridgeless. — A classical result ofFrink follows from this theorem which is the key to a simple proof of Petersen's theorem. Moreover, the above result can be used to prove practically all classical results on Eulerian graphs, including best upper and lower bounds for the number of Eulerian trails in a connected Eulerian graph. In the theory of Eulerian graphs, it can be viewed as the basis for good algorithms checking on several properties of this class of graphs.

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Herbert Fleischner
    • 1
  1. 1.Institut für InformationsverarbeitungWienÖsterreich

Personalised recommendations