[AG] Axelsson, O., Gustafsson, I.: Preconditioning and two-level multigrid methods of arbitrary degree of approximation. Math. Comput.**40**, n^{0} 161, 219–242 (1983)

[B] Braess, D.: The contraction number of a multigrid method for solving the Poisson equation. Numer. Math.**37**, 387–404 (1981)

[C] Ciarlet, P.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978

[FJKSTi] Foias, C., Jolly, M., Kevrikidis, I., Sell, G., Titi, E.: On the computation of inertial manifolds. Phys. Lett. A**131**, 433–436 (1988)

[FMT] Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. Math. Mod. Numer. Anal.**22**, 93–114 (1988)

[FNxx] Foias, C., Nicolaenko, B., Sell, G., Temam, R.: Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl.**67**, 197–226 (1988)

[Fxx] Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equations**73**, 309–353 (1988)

[FSTi] Foias, C., Sell, G., Titi, E.: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dyn. Differ. Equations**1**, 199–244 (1989)

[FT] Foias, C., Temam, R.: The algebraic approximation of attractors; the finite dimension case. Physica D**32**, 163–182 (1988)

[M1] Marion, M.: Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J. Dyn. Differ. Equations**1**, 245–267 (1989)

[M2] Marion, M.: Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation, Proc. Luminy Workshop on Dynamical Systems, in Math. Model. Num. Anal. (M2AN),**23**, 463–488 (1989)

[MS] Mallet-Paret, J., Sell, G.: Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Am. Math. Soc.**1**, 805–866 (1988)

[MT] Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal.**26**, 1139–1157 (1989)

[NST1] Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors. Physica D**16**, 155–183 (1985)

[NST2] Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of a class of pattern formation equations, Commun. Partial Differ. Equations**14**, 245–297 (1989)

[T1] Temam, R.: Dynamical systems, turbulence and numerical solution of the Navier-Stokes equations. In: Proceedings of the 11th International Conference on Numerical Methods in Fluid Dynamics, Dwoyer, D.L., Voigt, R. (Eds.) Lecture Notes in Physics. Berlin-Heidelberg-New York: Springer 1989

[T2] Temam, R.: Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles. C.R. Acad. Sci. Paris, Ser. II,**306**, 399–402 (1988)

[T3] Temam, R.: Attractors for the Navier-Stokes equations, localization and approximation. J. Fac. Sci. Tokyo, Sec. IA,**36**, 629–647 (1989)

[T4] Temam, R.: Navier-Stokes equations. North-Holland Publishing Company, 3rd revised edition, 1984

[T5] Temam, R.: Navier-Stokes equations and nonlinear functional analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983

[T6] Temam, R.: Sur l'approximation des équation de Navier-Stokes. C.R. Acad. Sci. Paris, Ser. A**262**, 219–221 (1966)

[Y] Yserentant, H.: On the multi-level spliting of finite element spaces. Numer. Math.**49**, 379–412 (1986)