Numerische Mathematik

, Volume 63, Issue 1, pp 123–144

Galerkin-wavelet methods for two-point boundary value problems

  • Jin-Chao Xu
  • Wei-Chang Shann
Article

DOI: 10.1007/BF01385851

Cite this article as:
Xu, J. & Shann, W. Numer. Math. (1992) 63: 123. doi:10.1007/BF01385851

Summary

Anti-derivatives of wavelets are used for the numerical solution of differential equations. Optimal error estimates are obtained in the applications to two-point boundary value problems of second order. The orthogonal property of the wavelets is used to construct efficient iterative methods for the solution of the resultant linear algebraic systems. Numerical examples are given.

Mathematics Subject Classification (1991)

65N3065N1365F10

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jin-Chao Xu
    • 1
  • Wei-Chang Shann
    • 2
  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.National Central UniversityChung-LiTaiwan, R.O.C.