, Volume 169, Issue 1-2, pp 75-84

Immunofluorescence and electron microscopic studies of microtubule organization during the cell cycle ofDictyota dichotoma (Phaeophyta, Dictyotales)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Interphase cells ofDictyota dichotoma (Hudson) Lamour. lack cortical microtubules (Mts) but display an impressive network of cytoplasmic microtubules (c-Mts). These are focussed on two opposed perinuclear centriolar sites where centrin or a centrin-homologue is localized. Some of the Mts surround the nucleus, but the majority traverse the cytoplasm as bundles variously directed towards the plasmalemma. In apical cells, and to a lesser extent in the square or slightly elongated meristematic cells, Mts are more or less evenly arranged. In elongated cells they form thick bundles longitudinally traversing the cytoplasm; a pattern maintained in differentiated cells. In early prophase the non-perinuclear Mts disappear but by late prophase a bi-astral arrangement of short Mts is observed. They enter polar nuclear depressions and attach to differentiated regions of the nuclear envelope where polar gaps open. By metaphase the spindle Mts converge on the centrioles at the polar gaps. At anaphase, interzonal Mts are evident and the asters start to reassemble. After telophase disruption of the interzonal Mts, the daughter nuclei approach each other, but move apart again before cytokinesis. The latter movement keeps pace with the development of two interdigitating Mt systems, ensheathing both daughter nuclei. The partition membrane “bisects” this Mt “cage”. Between telophase and cytokinesis the centrosomes separate, finally occupying opposed perinuclear sites. New Mts arise at the new centrosomes, some terminating on the consolidating partition membrane. Our data show thatD. dichotoma vegetative cells display a prominent cytoplasmic Mt cytoskeleton, which undergoes continual, but definite, change in organization during the cell cycle.