1.

J. Borwein, A. Ioffe: Proximal analysis on smooth spaces. Set-Valued Analysis (to appear)

2.

J. Borwein, D. Preiss: A smooth variational principle with applications. Trans. Amer. Math. Soc.**303**, 517–527 (1987)

3.

F. H. Clarke: Necessary conditions for nonsmooth problems of optimal control and the calculus of variations, Ph.D. thesis, University of Washington, Seattle, 1973

4.

F. H. Clarke: The Euler-Lagrange differential inclusion. J. Differ Eq.**19**, 80–90 (1975)

5.

F. H. Clarke: Admissible relaxation in variational and control problems. J. Math. Anal. Appl.**51**, 557–576 (1975)

6.

F. H. Clarke: The generalized problem of Bolza. SIAM J. Control Opt.**14**, 469–478 (1976)

7.

F. H. Clarke: The maximum principle under minimal hypotheses. SIAM J. Control Optim.**14**, 1078–1091

8.

F. H. Clarke: Extremal arcs and extended Hamiltonian systems. Trans. Amer. Math. Soc.**231**, 349–367 (1977)

9.

F. H. Clarke: The Erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations. Can. J. Math.**23** (1980), 494–509

10.

F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, 1983; reprinted as Vol. 5 of Classics in Applied Mathematics, SIAM (Philadelphia), 1990

11.

F. H. Clarke: Methods of Dynamic and Nonsmooth Optimization. (CBMS-NSF Regional conference series in applied mathematics, vol 57) SIAM Publications, Philadelphia, 1989

12.

F. H. Clarke: The decoupling principle in the calculus of variations. J. Math. Analysis Appl.**172** (1993), 92–105

13.

I. Ekeland, R. Temam: Convex Analysis and Variational Problems. Dunod, Paris, 1972

14.

A. Ioffe: On subdifferentiability spaces. Ann. New York Acad. Sci.**410**, 107–121 (1983)

15.

A. Ioffe: Calculus of Dini subdifferentials and contingent derivatives of set-valued maps. Nonlinear Anal. Theory Meth. Appl.**8**, 517–539 (1984)

16.

A. Ioffe: Proximal analysis and approximate subdifferentials. J. London Math. Soc.**41**, 175–192 (1990)

17.

A. Ioffe, V. Tikhomirov: Extension of variational problems. Trans. Moscow Math. Soc.**18**, 186–246 (1968)

18.

A. Ioffe, V. Tikhomirov: Theory of Extremal Problems. Nauka, Moscow, 1974 (Russian); translation North-Holland, Amsterdam, New York, 1979

19.

P. Loewen, R. T. Rockafellar: The adjoint arc in nonsmooth optimization. Trans. Amer. Math. Soc.**325**, 39–72 (1991)

20.

P. Loewen, R. T. Rockafellar: Optimal control of unbounded differential inclusions, SIAM J. Control Opt.**32**, 442–470 (1994).

21.

B. Mordukhovich: Approximation Methods in Problems of Optimization and Control. Nauka, Moscow, 1988 (Russian); translation to appear in Wiley Interscience

22.

B. Mordukhovich: On variational analysis of differential inclusions, in Optimization and Nonlinear Analysis. A. Ioffe, M. Marcus, S. Reich (eds.), Pitman Research Notes in Math. vol. 244, 1992

23.

B. Mordukhovich: Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Opt. (to appear)

24.

R. T. Rockafellar: Conjugate convex functions in optimal control and the calculus of variations. J. Math. Analysis Appl.**32**, 174–222 (1970)

25.

R. T. Rockafellar: Generalized Hamiltonian equations for convex problems of Lagrange. Pacific J. Math.**33**, 411–428 (1970)

26.

R. T. Rockafellar: Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc.**159**, 1–40 (1971)

27.

R. T. Rockafellar: Dualization of subgradient conditions for optimality. Nonlinear Anal. Theory Meth. Appl.**20**, 627–646 (1993)

28.

R. T. Rockafellar: Equivalent subgradient versions of Hamiltonian and Euler-Lagrange equations in variational analysis. SIAM J. Control Opt. (submitted)

29.

J. Warga: Relaxed variational problems. J. Math. Anal. Appl.**4**, 111–128 (1962)

30.

A. Ioffe: Euler-Lagrange and Hamiltonian formalisms in dynamic optimization (submitted)