Skip to main content
Log in

Electrical transport in open and closed systems

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Electrical conductance is typically calculated by approaches which view the electrical field as a causative source and the motion of carriers as a response. An alternative viewpoint, which starts from the flux of carriers maintained at the edges of a sample, and then calculates how charges build up and fields develop, has gained acceptance in the treatment of disordered systems, the solid state Aharanov-Bohm effect, and universal fluctuations. We analyze some of the less appreciated concomitants of this viewpoint, emphasizing both the generality and limitations of the viewpoint. Particular emphasis is given to the Residual Resistivity Dipole; localized scatterers in metallic conductivity are accompanied by highly localized transport fields. Closed Hamiltonian systems, e.g. a metallic ring with elastic scattering and driven by a time-dependent magnetic flux, are conservative. They cannot exhibit dissipation, under our conventionally accepted forms of physics. It is suggested that the limited precision available,in principle, in calculating the behavior of physical systems limits our ability to retrieve energy from supposedly conservative systems. This can be regarded as the ultimate source of dissipative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohn, W., Luttinger, J.M.: Phys. Rev.108, 590 (1957); ibid.109, 1892 (1958)

    Google Scholar 

  2. Kubo, R.: Science233, 330 (1986)

    Google Scholar 

  3. Landauer, R.: IBM J. Res. Dev.1, 223 (1957)

    Google Scholar 

  4. Landauer, R.: Philos. Mag.21, 863 (1970)

    Google Scholar 

  5. Landauer, R.: Z. Phys. B—Condensed Matter and Quanta21, 247 (1975)

    Google Scholar 

  6. Landauer, R.: In: Localization interaction and transport phenomena. Kramer, B., Bergmann, G., Bruynseraede, Y. (eds.), p. 38. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  7. Landauer, R.: Personal comments on the stone age of localization (unpublished) June 1983

  8. Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.: Phys. Rev. B22, 3519 (1980)

    Google Scholar 

  9. Frensley, W.R.: Phys. Rev. Lett.57, 2853 (1986)

    Google Scholar 

  10. Washburn, S., Webb, R.A.: Adv. Phys.35, 375 (1986)

    Google Scholar 

  11. Landauer, R., Büttiker, M.: Diffusive traversal time: effective area in magnetically induced interference. Phys. Rev. B (in press)

  12. Lee, P.A., Stone, A.D., Fukuyama, H.: Phys. Rev. B35, 1039 (1987)

    Google Scholar 

  13. Lee, P.A.: In: Statphys. 16, Thermodynamics and Statistical Mechanics. Stanley, H.E. (ed.), p. 169, Amsterdam: North-Holland 1986

    Google Scholar 

  14. Imry, Y.: Europhys. Lett.1, 249 (1986)

    Google Scholar 

  15. Al'tshuler, B.L.: JETP Lett.41, 648 (1985)

    Google Scholar 

  16. Feng, S., Lee, P.A., Stone, A.D.: Phys. Rev. Lett.56, 1960 (1986); ibid. Erratum56, 2772 (1986)

    Google Scholar 

  17. Büttiker, M.: Phys. Rev. B35, 4123 (1987)

    Google Scholar 

  18. Payne, M.C., Levi, A.F.J., Phillips, W.A., Inkson, J.C., Adkins, C.J.: J. Phys. C17, 1643 (1984)

    Google Scholar 

  19. Al'tshuler, B.L.: JETP Lett.41, 648 (1985)

    Google Scholar 

  20. Lee, P.A., Ramakrishnan, T.V.: Rev. Mod. Phys.57, 287 (1985)

    Google Scholar 

  21. Hu P.: Phys. Rev. B35, 4078 (1987); Landauer, R.: In: Nonlinearity in condensed matter. Bishop, A.R., Campbell, D.K., Trullinger, S.E., Kumar, P. (eds.), p. 2. Berlin, Heidelberg, New York: Springer 1987; see also Ref. 39

    Google Scholar 

  22. Das, A.K., Peierls, R.E.: Phys. C8, 3348 (1975); Turban, L., Nozières, P., Gerl, M.: J. Phys. (Paris)37, 159 (1976); Sham, L.: Phys. Rev. B12, 3142 (1975)

    Google Scholar 

  23. Sorbello, R.S.: In: Macroscopic properties of disordered media. Burridge, R., Childress, S., Papanicolaou, G. (eds.), p. 251. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  24. Sorbello, R.S.: Phys. Rev. B31, 798 (1985)

    Google Scholar 

  25. Verbruggen, A.H., Griessen, R., Groot, D.G. de: J. Phys. F16, 557 (1986)

    Google Scholar 

  26. Verbruggen, A.H., Griessen, R., Rector, J.H.: Phys. Rev. Lett.18, 1625 (1984)

    Google Scholar 

  27. Verbruggen, A.H.: Electromigration and proton-Hall effect in methalhydrides. Ph.D. Thesis, Amsterdam: Rodopi, 1985. Verbruggen's experimental thesis presents the best available broad overview of the theory

  28. Gupta, R.P.: Solid State Commun.59, 219 (1986)

    Google Scholar 

  29. Landauer, R.: In: Electrical transport and optical properties of inhomogeneous Media. Garland, J.C., Tanner, D.B. (eds.), Sect. 11, p. 32. New York: AIP 1978

    Google Scholar 

  30. Büttiker, M., Imry, Y., Landauer, R.: Phys. Lett.96A, 365 (1983)

    Google Scholar 

  31. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B31, 6207 (1985)

    Google Scholar 

  32. Gefen, Y., Imry, Y., Azbel, M.Ya.: Phys. Rev. Lett.52, 129 (1984)

    Google Scholar 

  33. Schwarzschild, B.: Physics Today39, 17 (Jan. 1986)

    Google Scholar 

  34. Sommerfeld, A., Bethe, H.: In: Handbuch der Physik, 2nd ed., Vol. 24, p. 446. Berlin: Springer 1933

    Google Scholar 

  35. Erdös, P., Herdon, R.C.: Adv. Phys.31, 65 (1982)

    Google Scholar 

  36. Landauer, R., Woo, J.W.F.: Phys. Rev. B5, 1189 (1972); see also Sect. 5 of [5]

    Google Scholar 

  37. Engquist, H.-L., Anderson, P.W.: Phys. Rev. B24, 1151 (1981)

    Google Scholar 

  38. see also Entin-Wohlman, O., Hartzstein, C., Imry, Y.: Phys. Rev. B34, 921 (1986)

    Google Scholar 

  39. Büttiker, M.B.: Phys. Rev. Lett.57, 1761 (1986)

    Google Scholar 

  40. Benoit, A., Umbach, C.P., Laibowitz, R.B., Webb, R.A.: Phys. Rev. Lett.58, 2343 (1987)

    Google Scholar 

  41. Azbel, M.Ya.: Solid State Commun.45, 527 (1983)

    Google Scholar 

  42. Azbel, M.Ya., Hartstein, A., DiVincenzo, D.P.: Phys. Rev. Lett.52, 1641 (1984)

    Google Scholar 

  43. Tsu, R., Esaki, L.: Appl. Phys. Lett.22, 562 (1973)

    Google Scholar 

  44. Büttiker, M.: Phys. Rev. B33, 3020 (1986); See also Büttiker, M.: IBM J. Res. Dev. (in press)

    Google Scholar 

  45. Enz, C.P.: Phys. Lett. A119, 432 (1987)

    Google Scholar 

  46. Uwaha, M., Nozières, P.: J. Phys.46, 109 (1985)

    Google Scholar 

  47. Castaing, B., Nozières, P.: J. Phys.41, 701 (1980)

    Google Scholar 

  48. Eränen, S., Sinkkonen, J.: Phys. Rev. B35, 2222 (1987)

    Google Scholar 

  49. Büttiker, M.: (unpublished)

  50. Kumar, N., Jayannavar, A.M.: Phys. Rev. B32, 3345 (1985)

    Google Scholar 

  51. Imry, Y.: In: Directions in condensed matter physics, memorial volume in honor of Shangkeng Ma, S-k., Grinstein, G., Mazenko, G. (eds.), p. 101. Singapore: World Scientific, 1986

    Google Scholar 

  52. Sivan, U., Imry, Y.: Phys. Rev. B33, 551 (1986)

    Google Scholar 

  53. Jansen, A.G.M., Wyder, P., van Kempen, H.: Europhys. News18, 21 (1987)

    Google Scholar 

  54. Sharvin, Yu.V.: Sov. Phys.-JETP21, 655 (1965)

    Google Scholar 

  55. Crandall, I.B.: Theory of vibrating systems and sound. Sect. 44, Princeton, van Nostrand 1954

    Google Scholar 

  56. Shapiro, B.: Phys. Rev. Lett.50, 747 (1983)

    Google Scholar 

  57. Hänggi, P., Thomas, H.: Phys. Rep.88, 207 (1982)

    Google Scholar 

  58. Gardiner, C.W.: Handbook of stochastic methods. 2nd Edn. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  59. van Kampen, N.G.: Stochastic processes in physics and chemistry. Amsterdam: North-Holland 1981

    Google Scholar 

  60. Carini, J.P., Muttalib, K.A., Nagel, S.R.: Phys. Rev. Lett.53, 102 (1984)

    Google Scholar 

  61. Landauer, R.: Phys. Rev. B33, 6497 (1986)

    Google Scholar 

  62. Landauer, R., Büttiker, M.: Phys. Rev. Lett.54, 2049 (1985)

    Google Scholar 

  63. Büttiker, M.: Phys. Scr.I 14, 82 (1986)

    Google Scholar 

  64. Landauer, R.: Resistance in metallic rings. Phys. Rev. Lett.58, 2150 (1987)

    Google Scholar 

  65. Lenstra, D., Haeringen, W. van: Phys. Rev. Lett.57, 1623 (1986)

    Google Scholar 

  66. Caldeira, A.O., Leggett, A.J.: Ann. Phys. (NY)149, 374 (1983)

    Google Scholar 

  67. Schmid, A.: Ann. Phys. (NY)170, 333 (1986)

    Google Scholar 

  68. Landauer, R.: IEEE Spectrum4, 105 (1967)

    Google Scholar 

  69. Landauer, R.: Phys. Scr.35, 88 (1987)

    Google Scholar 

  70. Landauer, R.: Found. Phys.16, 551 (1986)

    Google Scholar 

  71. Landauer, R.: In: Der Informationsbegriff in Technik und Wissenschaft. Folberth, O.G., Hackl, C. (Hrsg.), p. 139. München: Oldenbourg 1986

    Google Scholar 

  72. Landauer, R.: Ber. Bunsenges.80, 1048 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Harry Thomas on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landauer, R. Electrical transport in open and closed systems. Z. Physik B - Condensed Matter 68, 217–228 (1987). https://doi.org/10.1007/BF01304229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01304229

Keywords

Navigation