[1]

Arens, R.
*A Banach algebra generalization of conformal mappings of the disc*. Trans. Am. Math. Soc.,**81**, 1956, pp. 501–513.

[2]

Arens, R.
*The boundary integral of* log|ϕ|*for generalized analytic functions*. Trans. Am. Math. Soc.,**86**, 1957, pp. 57–69

[3]

Arens, R. andSinger, I.M.
*Generalized analytic functions*. Trans. Am. Math. Soc.,**81**, 1956, pp. 379–393.

[4]

Arocena, R.
*Generalized Toeplitz kernels and dilations of interwining operators*. Integral Equations and Operator Theory,**6**, 1983, pp. 759–778.

[5]

Arocena, R. and Cotlar, M.
*A generalized Herglotz-Bochner theorem and L*
^{2}
*weighted inequalities with finite measures*. Conference on Harmonic Analysis in honor of A. Zygmund (Chicago 1981)**I**, Wadsworth Int. Math. Series, 1983, pp. 258–269.

[6]

Ball, J., W.S. Li, D. Timotin and T. Trent. In Preparation (oral communication).

[7]

Bakonyi, M., L. Rodman, I.M. Spitkovsky and H.J. Woerdeman
*Positive matrix functions on the bitorus with prescribed Fourier coefficients in a band*. Preprint.

[8]

Bruzual, R.
*Local semigroups of contractions and some applications to Fourier representation theorems*. Int. Eq. and Op. Theory,**10**, 1987, pp. 780–801.

[9]

Bruzual, R. and Domínguez, M. Extensions of operator valued positive definite functions on an interval of ℤ^{2} with the lexicographic order. To appear in Acta Scientiarium Mathematicarum.

[10]

Carathéodory, C. andFéjer, L. Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten ünd uber Picard-Landauschen Satz. Rend. Circ. Mat. Palermo,**32**, 1911, pp. 218–239.

[11]

Cotlar, M. andSadosky, C.
*On the Helson-Szegö theorem and a related class of modified Toeplitz kernels*. Proc. Symp. Pure Math. AMS.,**35-I**, 1979, pp. 383–407.

[12]

Cotlar, M. andSadosky, C.
*Two parameter lifting theorems and double Hilbert transforms in commutative and non-commutative settings*. J. Math. Anal. and Appl.,**150**, 1990, pp. 439–480.

[13]

Cotlar, M. andSadosky, C.
*Transference of metrics induced by unitary couplings, a Sarason theorem for the bidimensional torus and a Sz.-Nagy-Foias theorem for two pairs of dilations*. J. Functional Analysis,**111**, N2, 1993, pp. 473–488.

[14]

M. Cotlar andC. Sadosky.*Two distinguished subspaces of product BMO and Nehari-AAK theory for Hankel operators on the torus*. Integral Equations and Operator Theory,**26**, 1996, pp. 273–304.

[15]

Domínguez, M.
*Weighted inequalities for the Hilbert transform and the adjoint operator in the continuous case*. Studia Mathematica,**95**, 1990, pp. 229–236.

[16]

Domínguez, M.
*Mixing coefficient, generalized maximal correlation coefficients and weakly positive measures*. Journal of Multivariate Analysis,**43-1** 1992, pp. 110–124.

[17]

Domínguez, M.
*Ordered lifting and interpolation problems for the bidimensional torus*. Preprint.

[18]

Helson, H. andLowdenslager, D.
*Prediction theory and Fourier series in several variables*. Acta Math.,**99**, 1958, pp. 165–202.

[19]

Helson, H. andSzegö, G.
*A problem in prediction theory*. Ann. Math. Pura Appl.,**51**, 1960, pp. 107–138.

[20]

Hoffman, K.
*Boundary behavior of generalized analytic functions*. Trans. Am. Math. Soc.,**87**, 1958, pp. 447–466.

[21]

Hoffman, K. andSinger, I.M.
*Maximal subalgebras of C*(Г). Am. J. Math.,**79**, 1957, pp. 295–305.

[22]

Nakazi, T. andYamamoto, T.
*A lifting theorem and uniform algebras*. Trans. Amer. Math. Soc.,**305**, 1988, pp. 79–94.

[23]

Nehari, Z.
*On bounded bilinear forms*. Annals of Mathematics,**65-1**, 1957, pp. 153–162.

[24]

Peng, L. andRochberg, R.
*Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponenetial type weights*. Pacific J. Math.,**173**, 1996, pp. 127–146.

[25]

Rochberg, R.
*Toeplitz and Hankel operators on the Paley Wiener space*. Integral Equations and Operator Theory,**10**, 1987, pp. 187–235.

[26]

Rudin, W.
*Fourier analysis on groups*. Interscience, 1962.

[27]

Sarason, D.
*Generalized interpolation in H*
^{∞}. Trans. Amer. Math. Soc.,**127**, 1967, pp. 179–203.