[1]

I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted graphs,*Discrete and Computational Geometry*,**9**(1) (1993), 81–100.

[2]

B. Awerbuch, A. Baratz, and D. Peleg, Cost-sensitive anlaysis of communication protocols,*Proc. 9th Symp. on Principles of Distributed Computing*, 1990, pp. 177–187.

[3]

B. Awerbuch, A. Baratz, and D. Peleg, Efficient broadcast and light-weight spanners, Manuscript (1991).

[4]

K. Bharath-Kumar and J. M. Jaffe, Routing to multiple destinations in computer networks,*IEEE Transactions on Communications*,**31**(3) (1983), 343–351.

[5]

B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph spanners,*Proc. 8th Symp. on Conputational Geometry*, 1992, pp. 192–201.

[6]

L. P. Chew, There are planar graphs almost as good as the complete graph,*Journal of Computer and System Sciences*,**39**(2) (1989), 205–219.

[7]

J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Performance-driven global routing for cell based IC's,*Proc. IEEE Internat. Conf. on Computer Design*, 1991, pp. 170–173.

[8]

J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Provably good performance-driven global routing,*IEEE Transactions on CAD*, (1992), 739–752.

[9]

J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Provably good algorithms for performance-driven global routing,*Proc. IEEE Internat. Symp. on Circuits and Systems*, San Diego, 1992, pp. 2240–2243.

[10]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest,*Introduction to Algorithms*, MIT Press, Cambridge, MA, 1989.

[11]

E. W. Dijkstra, A note on two problems in connexion with graphs,*Numerische Mathematik*,**1** (1959), 269–271.

[12]

M. L. Freeman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms,*Journal of the ACM*,**34**(3) (1987), 596–615.

[13]

H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,*Combinatorica*,**6**(2) (1986), 109–122.

[14]

J. JáJá*Introduction to Parallel Algorithms*, Addison-Wesley, Reading, MA, 1991.

[15]

J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,*Proceedings of the American Mathematical Society*,**7**, (1956), pp. 48–50.

[16]

C. Levcopoulos and A. Lingas, There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees,*Algorithmica*,**8**(3) (1992), 251–256.

[17]

D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube,*Proc. 6th Symp. on Principles of Distributed Computing*, 1987, pp. 77–85.

[18]

F. P. Preparata and M. I. Shamos,*Computational Geometry*, Springer-Verlag, New York, 1985.

[19]

R. C. Prim, Shortest connection networks and some generalizations,*Bell System Technical Journal*,**36** (1957), 1389–1401.

[20]

P. M. Vaidya, A sparse graph almost as good as the complete graph on points in*K* dimensions,*Discrete and Computational Geometry*,**6** (1991), 369–381.