, Volume 110, Issue 2, pp 87-94

Zostera capensis setchell: III. Some aspects of wall ingrowth development in leaf blade epidermal cells

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The development of wall ingrowths in leaf blade epidermal cells of the marine angiospermZostera capensis was studied by electron microscopy. Prior to the appearance of ingrowths long profiles of endoplasmic reticulum cisternae become arranged peripherally closely following the contours of the walls. The plasmalemma assumes a wavy appearance and in regions where wall ingrowths first start forming (i.e., along the radial, inner tangential and transverse walls) the plasmalemma becomes separated from the walls by an undulating extracytoplasmic space. Small, irregular projections of secondary wall material make their appearance here. Paramural bodies, dictyosomes, endoplasmic reticulum (ER) and possibly also microtubules seem to be closely associated with the initiation and subsequent development of wall projections. As the cells mature, new ingrowths arise in a centrifugal direction along the radial and transverse walls. When wall ingrowths reach a certain stage of their development, mitochondria become strongly polarized towards them and become closely associated with the plasmalemma which ensheaths the ingrowths. There is often also a close association between ER cisternae and the involuted plasmalemma of the wall projections. Initially ingrowths are slender, curved structures, but become more complex as the cells mature. Ingrowths are most extensively developed along the inner tangential and transverse walls. As epidermal cells age there is a loss of wall material from the ingrowths. The probable significance of the formation of wall ingrowths in the epidermal cells is also discussed.