, Volume 205, Issue 1-4, pp 114-121

Transport of ascorbate into protoplasts ofNicotiana tabacum Bright Yellow-2 cell line

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The uptake of ascorbate into protoplasts isolated from aNicotiana tabacum Bright Yellow-2 (BY-2) cell suspension culture was investigated. Addition of14C-labelled ascorbate to freshly isolated protoplasts resulted in a time- and substrate-dependent association of radioactive molecules with the protoplasts. The kinetic characterisation of this presumptive uptake revealed kinetics of Michaelis-Menten type with an apparent maximal uptake activity of 24 pmol/min·106 protoplasts and an apparent affinity constant of 139 μM. The amount of ascorbate molecules transported intoN. tabacum protoplasts decreased when nonlabelled dehydroascorbate or iso-ascorbate were added but was not affected by addition of 5,6-o-cyclohexylidene ascorbate or ascorbate-2-sulfate. These data indicate a carrier-mediated uptake of ascorbate into the protoplasts that shows a high structural specificity. To investigate which redox status of ascorbate is preferentially taken up by theN. tabacum protoplasts, transport was tested in the presence of various compounds that can affect the redox status of ascorbate. Testing uptake in the presence of a reductant, dithiothreitol, resulted in a significant and concentration-dependent inhibition of the amount of ascorbate molecules transported into the protoplasts. On the other hand, ascorbate uptake was significantly stimulated in the presence of the enzyme ascorbate oxidase. Ferricyanide did not affect ascorbate transport. Inhibition studies revealed that ascorbate uptake in the protoplasts is sensitive to addition of sulfhydryl reagents N-ethyl maleimide andp-chloro-mercuribenzenesulfonic acid and to a disruption of the proton gradient by the protonophore carbonylcyanide-3-chlorophenylhydrazone. The uptake of ascorbate was also inhibited by addition of cytochalasin B but not sensitive to addition of phloretin or sulfinpyrazone. Taken together these data indicate the presence of an ascorbate transport system in the plasma membrane ofN. tabacum protoplasts and suggest dehydroascorbate as the preferentially transported redox species. The putative presence of different carriers for reduced and oxidised ascorbate in the plasma membrane is discussed.