, Volume 15, Issue 1, pp 143-156

Curved graphite and its mathematical transformations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Mathematical transformations for graphite with positive, negative and zero Gaussian curvatures are presented. When the Gaussian curvatureK is zero, we analyse a bending transformation from a planar sheet into a cone. The Bonnet, the Goursat and a mixed transformation are studied for graphitic structures with the same topologies as triply periodic minimal surfaces (K < 0). We have found that using the Kenmotsu equations for surfaces of constant mean curvature it is possible to invert spherical and cylindrical graphite. A bending transformation for surfaces of revolution is also studied; during this transformation the helical arrangement of cylinders changes. All these transformations can give an insight into kinematic processes of curved graphite and into new shapes.