Skip to main content
Log in

Some computational problems in linear algebra as hard as matrix multiplication

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We define the complexity of a computational problem given by a relation using the model of computation trees together with the Ostrowski complexity measure. Natural examples from linear algebra are:

  • KER n : Compute a basis of the kernel for a givenn×n-matrix,

  • OGB n : Find an invertible matrix that transforms a given symmetricn×n-matrix (quadratic form) into diagonal form,

  • SPR n : Find a sparse representation of a givenn×n-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft, andJ. D. Ullman,The design and analysis of computer algorithms, Reading MA: Addison-Wesley, 1974.

    Google Scholar 

  2. A. Alder andV. Strassen,On the algorithmic complexity of associative algebras, Theor. Computer Science15 (1981), 201–211.

    Google Scholar 

  3. W. Baur andV. Strassen,The complexity of partial derivatives. Theor. Computer Science22 (1982), 317–330.

    Google Scholar 

  4. L. Blum, M. Shub, andS. Smale,On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc.21 (1989), 1–46.

    Google Scholar 

  5. J. Bunch andJ. Hopcroft,Triangular factorization, and inversion by fast matrix multiplication, Math. Comp.28 (1974), 231–236.

    Google Scholar 

  6. D. Coppersmith andS. Winograd,Matrix multiplication via arithmetic progressions, J. Symb. Comp.9 (1990), 251–280.

    Google Scholar 

  7. R. Hartshorne,Algebraic Geometry, Graduate Texts in Mathematics Vol. 52, Springer Verlag, 1977.

  8. K. Kalorkoti,The trace invariant and matrix inversion. Theor. Computer Science59 (1988), 277–286.

    Google Scholar 

  9. W. Keller-Gehrig,Fast algorithms for the characteristic polynomial, Theor. Computer Science36 (1985), 309–317.

    Google Scholar 

  10. H. Kraft,Geometric methods in representation theory, in: Representations of Algebras, Workshop Proc., Puebla, Mexico 1980, LNM944, Berlin-Heidelberg-New York 1982.

  11. J. C. Lafon and S. Winograd,A lower bound for the multiplicative complexity of the product of two matrices, (unpublished) manuscript, 1978.

  12. T. Lickteig,On semialgebraic decision complexity, Tech. Rep. TR-90-052 Int. Comp. Science Inst., Berkeley, and Univ. Tübingen, Habilitationsschrift, to appear.

  13. A. Schönhage,Unitäre Transformationen grosser Matrizen, Num. Math.20 (1973), 409–417.

    Google Scholar 

  14. V. Strassen,Gaussian elimination is not optimal, Numer. Mathematik13 (1969), 354–356.

    Google Scholar 

  15. V. Strassen,Berechnung und Programm I, Acta Informatica1 (1973), 320–335.

    Google Scholar 

  16. V. Strassen,Berechnung und Programm II, Acta Informatica2 (1973), 64–79.

    Google Scholar 

  17. V. Strassen,Vermeidung von Divisionen, Crelles Journal für die reine und angewandte Mathematik264 (1973), 184–202.

    Google Scholar 

  18. V. Strassen,The complexity of continued fraction, SIAM J. Comp.12/1 (1983), 1–27.

    Google Scholar 

  19. V. Strassen,Relative bilinear complexity and matrix multiplication, J. für die reine und angewandte Mathematik375/376 (1987), 406–443.

    Google Scholar 

  20. I. Wegener,The complexity of Boolean functions, Wiley-Teubner, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürgisser, P., Karpinski, M. & Lickteig, T. Some computational problems in linear algebra as hard as matrix multiplication. Comput Complexity 1, 131–155 (1991). https://doi.org/10.1007/BF01272518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01272518

Key words

Subject classifications

Navigation