Geometriae Dedicata

, Volume 46, Issue 3, pp 313–329

On the dissection of simplices into orthoschemes

Authors

  • Katrin Tschirpke
    • Mathematische F'akultät der Friedrich-SchillerUniversität Jena
Article

DOI: 10.1007/BF01263622

Cite this article as:
Tschirpke, K. Geom Dedicata (1993) 46: 313. doi:10.1007/BF01263622

Abstract

In this paper the dissection ofn-dimensional Euclidean simplices is investigated. Some propositions are proved about the dihedral angles of order (n−1) occurring when a simplex is cut into two subsimplices by a hyperplane. Furthermore, a description of simplices by graphs is given. If a simplex S is dissected into two subsimplices, then two graphs can be assigned to the two simplices. It is shown how these graphs are linked with the original simplex. By means of these graph-theoretical methods the dissection of four-dimensional simplices is thoroughly investigated and a new method for dissecting a four-dimensional simplex into orthoschemes is given. It is proved that 500 is an upper bound of the minimum number of orthoschemes needed.

Download to read the full article text

Copyright information

© Kluwer Academic Publishers 1993