M. Ajtai, 364-1 formulae on finite structures.*Annals of Pure and Applied Logic*
**24** (1983), 1–48.

E. Allender, A note on the power of threshold circuits. In*Proc. 30th Ann. IEEE Symp. Found. Comput. Sci.*, 1989, 580–584.

E. Allender and U. Hertrampf, Depth reduction for circuits of unbounded fanin.*Inform. and Comput.*
**108** (1994). To appear.

N. Atiyah and I. MacDonald,*Introduction to Commutative Algebra*. Addison-Wesley, 1969.

D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in*NC*
^{1}.*J. Comput. System Sci.*
**38**(1), (1989), 150–164.

D. A. M. Barrington, Quasipolynomial size circuit classes. In*Proc. 7th Ann. IEEE Conf. Structure in Complexity Theory*, 1992, 86–93.

D. A. M. Barrington andD. Thérien, Finite monoids and the fine structure of*NC*
^{1}.*J. Assoc. Comput. Mach.*
**35**(4) (1988), 941–952.

R. Beigel, The polynomial method in circuit complexity. In*Proc. 8th Ann. IEEE Conf. Structure in Complexity Theory*, 1993, 82–95.

R. Beigel andJ. Gill, Counting classes: Thresholds, parity, mods, and fewness.*Theoret. Comput. Sci.*
**103**(1) (1992), 3–23.

R. Beigel and J. Tarui, On ACC. In*Proc. 32nd Ann. IEEE Symp. Found. Comput. Sci.*, 1991, 783–792.

R. Beigel, N. Reingold, and D. Spielman, The perception strikes back. In*Proc. 6th Ann. IEEE Conf. Structure in Complexity Theory*, 1991, 286–291.

R. Beigel, N. Reingold, and D. Spielman, PP is closed under intersection.*J. Comput. System Sci.*
**48** (1994). To appear.

R. Boppana andM. Sipser, The complexity of finite functions. In*Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity*, ed.J. van Leeuwen, MIT Press and Elsevier, The Netherlands, 1990, 757–804.

A. K. Chandra, L. Stockmeyer, andU. Vishkin, Constant depth reducibility.*SIAM J. Comput.*
**13**(2) (1984), 423–438.

F. Green, J. Köbler, and J. Torán, The power of the middle bit. In*Proc. 7th Ann. IEEE Conf. Structure in Complexity Theory*, 1992, 111–117. An extended version has been drafted by Green, Köbler, Regan, Schwentick, and Torán.

M. Furst, J. B. Saxe, andM. Sipser, Parity, circuits, and the polynomial-time hierarchy.*Math. Systems Theory*
**17**(1) (1984), 13–27.

J. T. Håstad,*Computational Limitations for Small-Depth Circuits*. ACM Doctoral Dissertation Award. MIT Press, Cambridge, MA, 1986.

D. Johnson, A catalog of complexity classes. In*Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity*, ed.J. van Leeuwen, MIT Press and Elsevier, 1990, 69–161.

R. Kannan, H. Venkateswaran, V. Vinay, and A. C. Yao, A circuit-based proof of Toda's theorem.*Inform. and Comput.* (1993). To appear.

P. McKenzie and D. Thérien, Automata theory meets circuit complexity. In*Proc. of the 16th ICALP*, Lecture Notes in Computer Science 372, Springer-Verlag, 1989, 589–602.

A. A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {Λ, ⊕}.*Math. notes of the Academy of Science of the USSR*
**41** (4) (1987), 333–338.

M. Sipser, The history and status of the P versus NP question. In*Proc. Twenty-fourth Ann. ACM Symp. Theor. Comput.*, 1992, 603–618.

R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In*Proc. Nineteenth Ann. ACM Symp. Theor. Comput.*, 1987, 77–82.

J. Tarui, Probabilistic polynomials, AC^{0} functions, and the polynomial-time hierarchy.*Theoret. Comput. Sci.*
**113** (1993), 167–183.

S. Toda, PP is as hard as the polynomial-time hierarchy*SIAM J. Comput.*
**20**(5) (1991), 865–877.

S. Toda andM. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy.*SIAM J. Comput.*
**21**(2) (1992), 316–328.

A. C. Yao, Separating the polynomial-time hierarchy by oracles. In*Proc. 26th Ann. IEEE Symp. Found. Comput. Sci.*, 1985, 1–10.