, Volume 3, Issue 3, pp 263-283

Application of the finite-element method for the forward and inverse models in optical tomography

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The development of an optical tomographic imaging system for biological tissue based on time-resolved near-infrared transillumination has received considerable interest recently. The reconstruction problem is ill posed because of scatter-dominated photon propagation, and hence it requires both an accurate and fast transport model and a robust solution convergence scheme. The iterative image recovery algorithm described in this paper uses a numerical finite-element solution to the diffusion equation as the photon propagation model. The model itself is used to compare the influence of absorbing and scattering inhomogeneities embedded in a homogeneous tissue sample on boundary measurements to estimate the possibility of separating absorption and scattering images. Images of absorbers and scatterers reconstructed from both mean-time-of-flight and logarithmic intensity data are presented. It is found that mean-time-of-flight data offer increased resolution for reconstructing the scattering coefficient, whereas intensity data are favorable for reconstructing absorption.